Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Jan;57(2):241-54.
doi: 10.1007/s11103-004-7533-1.

The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana

Affiliations
Comparative Study

The mitochondrial branched-chain aminotransferase (AtBCAT-1) is capable to initiate degradation of leucine, isoleucine and valine in almost all tissues in Arabidopsis thaliana

Joachim Schuster et al. Plant Mol Biol. 2005 Jan.

Abstract

Plants are capable to de novo synthesize the essential amino acids leucine, isoleucine and valine. Studies in recent years, however, also revealed that plants have the potential to degrade leucine or may be all of the branched-chain amino acids. One of the enzymes participating in both biosynthesis and degradation is the branched-chain aminotransferase, which is in Arabidopsis thaliana encoded by a small gene family with six transcribed members. We have now studied the steady state mRNA levels by quantitative RT-PCR and promoter activities of these genes with promoter::glucuronidase reporter gene constructs in transgenic plants. The gene encoding the mitochondrial isoenzyme (Atbcat-1) is expressed in all tissues with predominant transcription in seedlings and leaves. Surprisingly the plastid located proteins (AtBCAT-2, -3 and -5) are expressed at rather low levels with only Atbcat-3 transcribed in all tissues. The most likely cytoplasmic-located AtBCAT-4 and AtBCAT-6 are mainly expressed in tissues associated with transport function and in meristematic tissues, respectively. A detailed characterization of the enzyme activity and substrate specificity of the mitochondrial AtBCAT-1 enzyme revealed the potential of this enzyme to initiate degradation of all branched-chain amino acids. In addition alpha-aminobutyrate and alpha-ketobutyrate as well as methionine and alpha-ketomethylthiobutyrate are identified as substrates. This suggests that AtBCAT-1 and potentially other members of this protein family may influence methionine levels and may play an important role in the metabolism of the nonprotein amino acid alpha-aminobutyrate. The consequences of these substrate specificities for bioplastic production and methionine homeostasis are discussed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Physiol. 2004 Feb;134(2):838-48 - PubMed
    1. Plant Cell. 2004 Jan;16(1):241-56 - PubMed
    1. Plant Physiol. 2002 Jun;129(2):540-50 - PubMed
    1. Plant Physiol. 2001 Jun;126(2):601-12 - PubMed
    1. Plant J. 2004 Mar;37(6):914-39 - PubMed

Publication types

MeSH terms

LinkOut - more resources