Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun 6;11(12):3711-27.
doi: 10.1002/chem.200401150.

Photoinduced processes within compact dyads based on triphenylpyridinium-functionalized bipyridyl complexes of ruthenium(II)

Affiliations

Photoinduced processes within compact dyads based on triphenylpyridinium-functionalized bipyridyl complexes of ruthenium(II)

Philippe P Lainé et al. Chemistry. .

Abstract

As an alternative to conventional charge-separation functional molecular models based on long-range ET within redox cascades, a "compact approach" has been examined. To this end, spacer elements usually inserted between main redox-active units within polyad systems have been removed, allowing extended rigidity but at the expense of enhanced intercomponent electronic communication. The molecular assemblies investigated here are of the P-(theta (1))-A type, where the theta (1) twist angle is related to the degree of conjugation between the photosensitizer (P, of {Ru(bpy)(3)}(2+) type) and the electron-acceptor (A). 4-N- and 4-N-,4'-N-(2,4,6-triphenylpyridinio)-2,2'-bipyridine ligands (A(1)-bpy and A(2)-bpy, respectively) have been synthesized to give complexes with Ru(II), 1-bpy and 2-bpy, respectively. Combined solid-state analysis (X-ray crystallography), solution studies ((1)H NMR, cyclic voltammetry) and computational structural optimization allowed verifying that theta (1) angle approaches 90 degrees within 1-bpy and 2-bpy in solution. Also, anticipated existence of strong intercomponent electronic coupling has been confirmed by investigating electronic absorption properties and electrochemical behavior of the compounds. The capability of 1-bpy and 2-bpy to undergo PET process was evaluated by carrying out their photophysical study (steady state emission and time-resolved spectroscopy at both 293 and 77 K). The conformational dependence of photoinduced processes within P-(theta (1))-A systems has been established by comparing the photophysical properties of 1-bpy (and 2-bpy) with those of an affiliated species reported in the literature, 1-phen. A complementary theoretical analysis (DFT) of the change of spin density distribution within model [1-bpy(theta (1))](-) mono-reduced species as a function of theta (1) has been undertaken and the possibility of conformationally switching emission properties of P was derived.

PubMed Disclaimer

MeSH terms

LinkOut - more resources