Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:45:177-202.
doi: 10.1146/annurev.pharmtox.45.120403.100058.

The role of metabolic activation in drug-induced hepatotoxicity

Affiliations
Review

The role of metabolic activation in drug-induced hepatotoxicity

B Kevin Park et al. Annu Rev Pharmacol Toxicol. 2005.

Abstract

The importance of reactive metabolites in the pathogenesis of drug-induced toxicity has been a focus of research interest since pioneering investigations in the 1950s revealed the link between toxic metabolites and chemical carcinogenesis. There is now a great deal of evidence that shows that reactive metabolites are formed from drugs known to cause hepatotoxicity, but how these toxic species initiate and propagate tissue damage is still poorly understood. This review summarizes the evidence for reactive metabolite formation from hepatotoxic drugs, such as acetaminophen, tamoxifen, diclofenac, and troglitazone, and the current hypotheses of how this leads to liver injury. Several hepatic proteins can be modified by reactive metabolites, but this in general equates poorly with the extent of toxicity. Much more important may be the identification of the critical proteins modified by these toxic species and how this alters their function. It is also important to note that the toxicity of reactive metabolites may be mediated by noncovalent binding mechanisms, which may also have profound effects on normal liver physiology. Technological developments in the wake of the genomic revolution now provide unprecedented power to characterize and quantify covalent modification of individual target proteins and their functional consequences; such information should dramatically improve our understanding of drug-induced hepatotoxic reactions.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources