Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo
- PMID: 15822801
- DOI: 10.1109/tmi.2004.843199
Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo
Abstract
In optoacoustic imaging, short laser pulses irradiate highly scattering human tissue and adiabatically heat embedded absorbing structures, such as blood vessels, to generate ultrasound transients by means of the thermoelastic effect. We present an optoacoustic vascular imaging system that records these transients on the skin surface with an ultrasound transducer array and displays the images online. With a single laser pulse a complete optoacoustic B-mode image can be acquired. The optoacoustic system exploits the high intrinsic optical contrast of blood and provides high-contrast images without the need for contrast agents. The high spatial resolution of the system is determined by the acoustic propagation and is limited to the submillimeter range by our 7.5-MHz linear array transducer. A Q-switched alexandrite laser emitting short near-infrared laser pulses at a wavelength of 760 nm allows an imaging depth of a few centimeters. The system provides real-time images at frame-rates of 7.5 Hz and optionally displays the classically generated ultrasound image alongside the optoacoustic image. The functionality of the system was demonstrated in vivo on human finger, arm and leg. The proposed system combines the merits and most compelling features of optics and ultrasound in a single high-contrast vascular imaging device.
Similar articles
-
Three-dimensional optoacoustic tomography at video rate.Opt Express. 2012 Sep 24;20(20):22712-9. doi: 10.1364/OE.20.022712. Opt Express. 2012. PMID: 23037421
-
Fusion of conventional ultrasound imaging and acousto-optic sensing by use of a standard pulsed-ultrasound scanner.Opt Lett. 2005 Apr 1;30(7):744-6. doi: 10.1364/ol.30.000744. Opt Lett. 2005. PMID: 15832925
-
Reduction of background in optoacoustic image sequences obtained under tissue deformation.J Biomed Opt. 2009 Sep-Oct;14(5):054011. doi: 10.1117/1.3227038. J Biomed Opt. 2009. PMID: 19895113
-
[Optoacoustic imaging].Radiologe. 2015 Nov;55(11):964-6, 968-75. doi: 10.1007/s00117-015-0024-3. Radiologe. 2015. PMID: 26438091 Review. German.
-
Ultrasound in vascular pathologies.Eur Radiol. 1998;8(6):849-57. doi: 10.1007/s003300050482. Eur Radiol. 1998. PMID: 9683687 Review.
Cited by
-
Multiangle Long-Axis Lateral Illumination Photoacoustic Imaging Using Linear Array Transducer.Sensors (Basel). 2020 Jul 21;20(14):4052. doi: 10.3390/s20144052. Sensors (Basel). 2020. PMID: 32708170 Free PMC article.
-
Full-visibility 3D imaging of oxygenation and blood flow by simultaneous multispectral photoacoustic fluctuation imaging (MS-PAFI) and ultrasound Doppler.Sci Rep. 2023 Feb 20;13(1):2961. doi: 10.1038/s41598-023-29177-9. Sci Rep. 2023. PMID: 36806304 Free PMC article.
-
In vivo photoacoustic microscopy of human cutaneous microvasculature and a nevus.J Biomed Opt. 2011 Jan-Feb;16(1):016015. doi: 10.1117/1.3528661. J Biomed Opt. 2011. PMID: 21280921 Free PMC article.
-
Portable and Affordable Light Source-Based Photoacoustic Tomography.Sensors (Basel). 2020 Oct 29;20(21):6173. doi: 10.3390/s20216173. Sensors (Basel). 2020. PMID: 33138296 Free PMC article. Review.
-
Advances in Clinical and Biomedical Applications of Photoacoustic Imaging.Expert Opin Med Diagn. 2010 Nov 1;4(6):497-510. doi: 10.1517/17530059.2010.529127. Expert Opin Med Diagn. 2010. PMID: 21344060 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources