Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Apr;24(4):457-67.
doi: 10.1109/tmi.2005.844159.

Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity

Affiliations
Comparative Study

Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity

Juan R Cebral et al. IEEE Trans Med Imaging. 2005 Apr.

Abstract

Hemodynamic factors are thought to be implicated in the progression and rupture of intracranial aneurysms. Current efforts aim to study the possible associations of hemodynamic characteristics such as complexity and stability of intra-aneurysmal flow patterns, size and location of the region of flow impingement with the clinical history of aneurysmal rupture. However, there are no reliable methods for measuring blood flow patterns in vivo. In this paper, an efficient methodology for patient-specific modeling and characterization of the hemodynamics in cerebral aneurysms from medical images is described. A sensitivity analysis of the hemodynamic characteristics with respect to variations of several variables over the expected physiologic range of conditions is also presented. This sensitivity analysis shows that although changes in the velocity fields can be observed, the characterization of the intra-aneurysmal flow patterns is not altered when the mean input flow, the flow division, the viscosity model, or mesh resolution are changed. It was also found that the variable that has the greater impact on the computed flow fields is the geometry of the vascular structures. We conclude that with the proposed modeling pipeline clinical studies involving large numbers cerebral aneurysms are feasible.

PubMed Disclaimer

MeSH terms