Putting microarrays in a context: integrated analysis of diverse biological data
- PMID: 15826355
- DOI: 10.1093/bib/6.1.34
Putting microarrays in a context: integrated analysis of diverse biological data
Abstract
In recent years, multiple types of high-throughput functional genomic data that facilitate rapid functional annotation of sequenced genomes have become available. Gene expression microarrays are the most commonly available source of such data. However, genomic data often sacrifice specificity for scale, yielding very large quantities of relatively lower-quality data than traditional experimental methods. Thus sophisticated analysis methods are necessary to make accurate functional interpretation of these large-scale data sets. This review presents an overview of recently developed methods that integrate the analysis of microarray data with sequence, interaction, localisation and literature data, and further outlines current challenges in the field. The focus of this review is on the use of such methods for gene function prediction, understanding of protein regulation and modelling of biological networks.
Similar articles
-
Integrated analysis of microarray results.Methods Mol Biol. 2007;382:429-37. doi: 10.1007/978-1-59745-304-2_27. Methods Mol Biol. 2007. PMID: 18220247
-
SBEAMS-Microarray: database software supporting genomic expression analyses for systems biology.BMC Bioinformatics. 2006 Jun 6;7:286. doi: 10.1186/1471-2105-7-286. BMC Bioinformatics. 2006. PMID: 16756676 Free PMC article.
-
CoCo: a web application to display, store and curate ChIP-on-chip data integrated with diverse types of gene expression data.Bioinformatics. 2007 Mar 15;23(6):771-3. doi: 10.1093/bioinformatics/btl641. Epub 2007 Jan 17. Bioinformatics. 2007. PMID: 17234641
-
Data integration and genomic medicine.J Biomed Inform. 2007 Feb;40(1):5-16. doi: 10.1016/j.jbi.2006.02.007. Epub 2006 Mar 9. J Biomed Inform. 2007. PMID: 16574494 Review.
-
The importance of biological databases in biological discovery.Curr Protoc Bioinformatics. 2006 Mar;Chapter 1:Unit 1.1. doi: 10.1002/0471250953.bi0101s13. Curr Protoc Bioinformatics. 2006. PMID: 18428753 Review.
Cited by
-
New measurement methods of network robustness and response ability via microarray data.PLoS One. 2013;8(1):e55230. doi: 10.1371/journal.pone.0055230. Epub 2013 Jan 28. PLoS One. 2013. PMID: 23383119 Free PMC article.
-
Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network.Nucleic Acids Res. 2014 Oct;42(18):e138. doi: 10.1093/nar/gku678. Epub 2014 Jul 24. Nucleic Acids Res. 2014. PMID: 25063300 Free PMC article.
-
Integrated analysis of gene expression by Association Rules Discovery.BMC Bioinformatics. 2006 Feb 7;7:54. doi: 10.1186/1471-2105-7-54. BMC Bioinformatics. 2006. PMID: 16464256 Free PMC article.
-
Predicting human protein function with multi-task deep neural networks.PLoS One. 2018 Jun 11;13(6):e0198216. doi: 10.1371/journal.pone.0198216. eCollection 2018. PLoS One. 2018. PMID: 29889900 Free PMC article.
-
Bioinformatics analysis to identify the critical genes, microRNAs and long noncoding RNAs in melanoma.Medicine (Baltimore). 2017 Jul;96(29):e7497. doi: 10.1097/MD.0000000000007497. Medicine (Baltimore). 2017. PMID: 28723760 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources