Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;289(2):F305-13.
doi: 10.1152/ajprenal.00349.2004. Epub 2005 Apr 12.

Differential effects of salt on renal hemodynamics and potential pressure transmission in stroke-prone and stroke-resistant spontaneously hypertensive rats

Affiliations
Free article

Differential effects of salt on renal hemodynamics and potential pressure transmission in stroke-prone and stroke-resistant spontaneously hypertensive rats

Isam Abu-Amarah et al. Am J Physiol Renal Physiol. 2005 Aug.
Free article

Abstract

Salt-supplemented stroke-prone spontaneously hypertensive rats (SHRsp) develop more severe hypertension-induced renal damage (HIRD) compared with their progenitor SHR. The present studies were performed to examine whether in addition to increasing the severity of hypertension salt also enhanced the transmission of such hypertension to the renal vascular bed in the SHRsp. "Step" and "dynamic" renal blood flow (RBF) autoregulation (AR) were examined in approximately 12-wk-old SHR and SHRsp after 3-5 days of an 8% NaCl diet. During step AR under anesthesia (n = 8-11), RBF was significantly higher in the SHRsp at all perfusion pressures (P < 0.01), but AR capacity was not different. Similarly, in separate conscious chronically instrumented rats (n = 8 each), both blood pressure (BP) and RBF were modestly but significantly higher at baseline before salt in the SHRsp (P < 0.05). However, transfer function analysis did not show significant differences in the admittance gain parameters. However, after 3-5 days of salt, although average BP was not significantly altered in either strain, RBF increased further in the SHRsp and there was a significantly greater transfer of BP into RBF power in the SHRsp. This was reflected in the significantly higher admittance gain parameters at most frequencies including the heartbeat frequency (P < 0.05 maximum). These differential hemodynamic effects of salt have the potential to enhance BP transmission to the renal vascular bed and also contribute to the more severe HIRD observed in the salt-supplemented SHRsp.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources