Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1992 Apr;25(4):359-68.
doi: 10.1016/0021-9290(92)90255-y.

The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens

Affiliations
Review

The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens

F Linde et al. J Biomech. 1992 Apr.

Abstract

The effect of specimen geometry on the mechanical behaviour of trabecular bone specimens was studied by non-destructive uniaxial compression to 0.4% strain using cylindrical specimens with different sizes and length-to-diameter ratios, and by comparing cubic and cylindrical specimens with the same cross-sectional area. Both the length and the cross-sectional area of the specimen had a highly significant influence on the mechanical behaviour (p less than 0.0001). Within the actual range of length (2.75-11.0 mm) the normalized stiffness (Young's modulus) was related nearly linearly to the specimen length. This dependency on specimen length is suggested to be caused mainly by structural disintegrity of the trabecular specimens near the surface. The normalized stiffness (Young's modulus) was also positively correlated to the cross-sectional area. This dependency on cross-sectional area is probably due to friction-induced stress inhomogeneity at the platen-specimen interface. A cube with side length 6.5 mm or a cylindrical specimen with 7.5 mm diameter and 6.5 mm length are suggested as standard specimens for comparative studies on trabecular bone mechanics.

PubMed Disclaimer

LinkOut - more resources