Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;233(2):540-52.
doi: 10.1002/dvdy.20368.

Expression and regulation of mouse SERDIN1, a highly conserved cardiac-specific leucine-rich repeat protein

Affiliations
Free article

Expression and regulation of mouse SERDIN1, a highly conserved cardiac-specific leucine-rich repeat protein

Igor I Adameyko et al. Dev Dyn. 2005 Jun.
Free article

Abstract

Despite recent progress, the precise mechanisms responsible for vertebrate cardiac development are still enigmatic. Better understanding of cardiac biology and disease necessitates identification and analysis of a full spectrum of regulatory and structural proteins specific to the developing heart. By performing an in silico screen, we identified a cardiac-specific gene we named Serdin1. The Serdin1 gene is conserved, and the message is restricted to the heart in several vertebrate species, thus implicating Serdin1 as an important gene in cardiac development. In situ hybridization confirmed that the Serdin1 message is cardiac-specific in mice as early as embryonic day 8.5. Antibody staining demonstrated predominantly nuclear staining in immortalized cardiac cell lines (P19 and HL-1) and proliferating cultured cardiomyocytes, whereas in vivo SERDIN1 localizes to I bands of the sarcomere. Seven kilobases of the upstream regulatory sequence of Serdin1 is sufficient for cardiac-specific expression. Computer analysis revealed an 80-bp homologous region between the mouse and the human Serdin genes that contains GATA, SRF, and MEF sites. Cardiac specificity and localization patterns suggest that SERDIN1 is intimately integrated with the molecular pathways controlling cardiogenesis in vertebrates.

PubMed Disclaimer

Publication types

MeSH terms