Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;6(4):R36.
doi: 10.1186/gb-2005-6-4-r36. Epub 2005 Mar 24.

Quantitative genomics of starvation stress resistance in Drosophila

Affiliations

Quantitative genomics of starvation stress resistance in Drosophila

Susan T Harbison et al. Genome Biol. 2005.

Abstract

Background: A major challenge of modern biology is to understand the networks of interacting genes regulating complex traits, and the subset of these genes that affect naturally occurring quantitative genetic variation. Previously, we used P-element mutagenesis and quantitative trait locus (QTL) mapping in Drosophila to identify candidate genes affecting resistance to starvation stress, and variation in resistance to starvation stress between the Oregon-R (Ore) and 2b strains. Here, we tested the efficacy of whole-genome transcriptional profiling for identifying genes affecting starvation stress resistance.

Results: We evaluated whole-genome transcript abundance for males and females of Ore, 2b, and four recombinant inbred lines derived from them, under control and starved conditions. There were significant differences in transcript abundance between the sexes for nearly 50% of the genome, while the transcriptional response to starvation stress involved approximately 25% of the genome. Nearly 50% of P-element insertions in 160 genes with altered transcript abundance during starvation stress had mutational effects on starvation tolerance. Approximately 5% of the genome exhibited genetic variation in transcript abundance, which was largely attributable to regulation by unlinked genes. Genes exhibiting variation in transcript abundance among lines did not cluster within starvation resistance QTLs, and none of the candidate genes affecting variation in starvation resistance between Ore and 2b exhibited significant differences in transcript abundance between lines.

Conclusions: Expression profiling is a powerful method for identifying networks of pleiotropic genes regulating complex traits, but the relationship between variation in transcript abundance among lines used to map QTLs and genes affecting variation in quantitative traits is complicated.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Chromosome locations of genes differentially expressed by sex. (a) Observed (magenta) and expected (blue) number of probe sets upregulated in males. (b) Observed (magenta) and expected (blue) numbers of probe sets upregulated in females.
Figure 2
Figure 2
Genetic architecture of transcription. (a-c) Sex × treatment interaction for females (magenta)and males (blue): (a) Chorion protein 38; (b) Alkaline phosphatase 4; (c) Phosphogluconate dehydrogenase. (d-k) Interactions with line. Ore (black), 2b (red), RI 14 (green), RI 21 (dark blue), RI 35formula image(magenta), RI 42formula image (light blue). (d, e) Sex × line interaction, averaged over treatments: (d) modulo; (e) l(2) giant larvae. (f-i) line × treatment interaction, averaged over sex: (f) CG11089; (g) Nervana 1; (h) Cyp9b2; (i) Peroxiredoxin 2540. (j, k) Sex × line × treatment interaction. The difference in expression between the starved and control treatments is plotted for females (magenta) and males (blue): (j) sallimus; (k) Esterase 6. (l-o) Regulation of transcript abundance. The same letters denote expression levels that are not significantly different. Magenta indicates 2b and blue indicates Ore genome. (l, m) Linked regulation of variation in transcript abundance: (l) UDP-glycosyltransferase 35b; (m) Signal recognition particle receptor b. (n, o) Unlinked regulation of variation in transcript abundance: (n) Arrestin 2; (o) Klarsicht.

References

    1. Mackay TFC. The genetic architecture of quantitative traits. Annu Rev Genet. 2001;35:303–339. doi: 10.1146/annurev.genet.35.102401.090633. - DOI - PubMed
    1. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G. A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet. 2003;33:40–48. doi: 10.1038/ng1056. - DOI - PubMed
    1. Norga KK, Gurganus MC, Dilda CL, Yamamoto A, Lyman RF, Patel PH, Rubin GM, Hoskins RA, Mackay TFC, Bellen HJ. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr Biol. 2003;13:1388–1397. doi: 10.1016/S0960-9822(03)00546-3. - DOI - PubMed
    1. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science. 2002;298:2345–2349. doi: 10.1126/science.1076641. - DOI - PubMed
    1. Anholt RRH, Dilda CL, Chang S, Fanara JJ, Kulkarni NH, Ganguly I, Rollmann SM, Kamdar KP, Mackay TFC. The genetic architecture of odor-guided behavior in Drosophila: epistasis and the transcriptome. Nat Genet. 2003;35:180–184. doi: 10.1038/ng1240. - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources