Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;289(2):H832-9.
doi: 10.1152/ajpheart.00178.2005. Epub 2005 Apr 15.

Pentoxifylline attenuates cardiac dysfunction and reduces TNF-alpha level in ischemic-reperfused heart

Affiliations
Free article

Pentoxifylline attenuates cardiac dysfunction and reduces TNF-alpha level in ischemic-reperfused heart

Ming Zhang et al. Am J Physiol Heart Circ Physiol. 2005 Aug.
Free article

Abstract

Although pentoxifylline (PTXF), a phosphodiesterase inhibitor, has been reported to exert beneficial effects in cardiac bypass surgery, its effect and mechanisms against ischemia-reperfusion (I/R) injury in heart are poorly understood. Because I/R is known to increase the level of tumor necrosis factor (TNF)-alpha in myocardium and PTXF has been shown to depress the production of TNF-alpha in failing heart, this study examined the hypothesis that PTXF may attenuate cardiac dysfunction and reduce TNF-alpha content in I/R heart. For this purpose, isolated rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 2-30 min. Although cardiac dysfunction due to ischemia was not affected, the recovery of heart function upon reperfusion was markedly improved by PTXF treatment. This cardioprotective effect of PTXF was dose dependent; maximal effect was seen at a concentration of 125 microM. TNF-alpha, nuclear factor-kappaB (NF-kappaB), and phosphorylated NF-kappaB contents were decreased in ischemic heart but were markedly increased within 2 min of starting reperfusion. The ratio of cytosolic-to-homogenate NF-kappaB was decreased, whereas the ratio of particulate-to-homogenate NF-kappaB was increased in I/R hearts. These changes in TNF-alpha and NF-kappaB protein contents as well as in NF-kappaB redistribution due to I/R were significantly attenuated by PTXF treatment. The results of this study indicate that the cardioprotective effects of PTXF against I/R injury may be due to reductions in the activation of NF-kappaB and the production of TNF-alpha content.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources