An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood
- PMID: 15834143
- PMCID: PMC1450415
- DOI: 10.1534/genetics.104.038349
An efficient Monte Carlo method for estimating Ne from temporally spaced samples using a coalescent-based likelihood
Abstract
This article presents an efficient importance-sampling method for computing the likelihood of the effective size of a population under the coalescent model of Berthier et al. Previous computational approaches, using Markov chain Monte Carlo, required many minutes to several hours to analyze small data sets. The approach presented here is orders of magnitude faster and can provide an approximation to the likelihood curve, even for large data sets, in a matter of seconds. Additionally, confidence intervals on the estimated likelihood curve provide a useful estimate of the Monte Carlo error. Simulations show the importance sampling to be stable across a wide range of scenarios and show that the N(e) estimator itself performs well. Further simulations show that the 95% confidence intervals around the N(e) estimate are accurate. User-friendly software implementing the algorithm for Mac, Windows, and Unix/Linux is available for download. Applications of this computational framework to other problems are discussed.
Figures







Similar articles
-
Exact computation of coalescent likelihood for panmictic and subdivided populations under the infinite sites model.IEEE/ACM Trans Comput Biol Bioinform. 2010 Oct-Dec;7(4):611-8. doi: 10.1109/TCBB.2010.2. IEEE/ACM Trans Comput Biol Bioinform. 2010. PMID: 21030730
-
Maximum-likelihood and markov chain monte carlo approaches to estimate inbreeding and effective size from allele frequency changes.Genetics. 2003 Jul;164(3):1189-204. doi: 10.1093/genetics/164.3.1189. Genetics. 2003. PMID: 12871924 Free PMC article.
-
Estimating effective population size from samples of sequences: a bootstrap Monte Carlo integration method.Genet Res. 1992 Dec;60(3):209-20. doi: 10.1017/s0016672300030962. Genet Res. 1992. PMID: 1286805
-
Metropolis sampling in pedigree analysis.Stat Methods Med Res. 1993;2(3):263-82. doi: 10.1177/096228029300200305. Stat Methods Med Res. 1993. PMID: 8261261 Review.
-
The future of biostatistics: expecting the unexpected.Stat Med. 1997 Dec 30;16(24):2773-84. doi: 10.1002/(sici)1097-0258(19971230)16:24<2773::aid-sim761>3.0.co;2-q. Stat Med. 1997. PMID: 9483713 Review.
Cited by
-
Estimation of the number of founders of an invasive pest insect population: the fire ant Solenopsis invicta in the USA.Proc Biol Sci. 2008 Oct 7;275(1648):2231-40. doi: 10.1098/rspb.2008.0412. Proc Biol Sci. 2008. PMID: 18577505 Free PMC article.
-
Living on the edge: reconstructing the genetic history of the Finnish wolf population.BMC Evol Biol. 2014 Mar 28;14:64. doi: 10.1186/1471-2148-14-64. BMC Evol Biol. 2014. PMID: 24678616 Free PMC article.
-
Birds in space and time: genetic changes accompanying anthropogenic habitat fragmentation in the endangered black-capped vireo (Vireo atricapilla).Evol Appl. 2012 Sep;5(6):540-52. doi: 10.1111/j.1752-4571.2011.00233.x. Epub 2012 Jan 24. Evol Appl. 2012. PMID: 23028396 Free PMC article.
-
Genetic variation and selection response in model breeding populations of Brassica rapa following a diversity bottleneck.Genetics. 2006 Jan;172(1):457-65. doi: 10.1534/genetics.105.040899. Epub 2005 Sep 12. Genetics. 2006. PMID: 16157675 Free PMC article.
-
Spatio-Temporal Changes in Effective Population Size in an Expanding Metapopulation of Eurasian Otters.Evol Appl. 2025 Jan 17;18(1):e70067. doi: 10.1111/eva.70067. eCollection 2025 Jan. Evol Appl. 2025. PMID: 39830484 Free PMC article.
References
-
- Baum, L. E., 1971. Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37: 1554–1563.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources