Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 26;44(16):6214-22.
doi: 10.1021/bi0500980.

Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor

Affiliations
Free article

Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor

Shu-ou Shan et al. Biochemistry. .
Free article

Erratum in

  • Biochemistry. 2005 May 24;44(20):7602

Abstract

In signal recognition particle (SRP)-dependent targeting of proteins to the bacterial plasma membrane, two GTPases, Ffh (the SRP GTPase) and FtsY (the receptor GTPase), form a complex in which both proteins reciprocally stimulate each other's GTPase activities. We mutated Asp251 in the Ffh active site to Asn (D251N), converting Ffh to a xanthosine 5'-triphosphate (XTP)-specific protein as has been observed in many other GTPases. Unexpectedly, mutant SRP(D251N) is severely compromised in the formation of an active SRP.FtsY complex when bound with cognate XTP, and even more surprisingly, mutant SRP(D251N) works better when bound with noncognate GTP. These paradoxical results are explained by a model in which Ffh Asp251 forms a bidentate interaction with not only the bound GTP but also the receptor FtsY across the dimer interface. These interactions form part of the network that seals the lateral entrance to the composite active site at the dimer interface, thereby ensuring the electrostatic and/or structural integrity of the active site and contributing to the formation of an active SRP.FtsY complex.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources