Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis
- PMID: 15836491
- DOI: 10.1111/j.1365-2672.2005.02558.x
Random amplified polymorphic DNA-PCR based cloning of markers to identify the beer-spoilage strains of Lactobacillus brevis, Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis
Abstract
Aims: Beer-spoilage ability of lactic acid bacteria such as Lactobacillus brevis is a strain-dependent phenomenon in which the mechanism has not yet been completely clarified. In order to systematically identify genes that contribute to beer-spoilage, large-scale random amplified polymorphic DNA (RAPD)-based cloning methods was carried out.
Methods and results: A systematic RAPD polymerase chain reaction (PCR) analysis using 600 primers was performed on beer-spoilage and on nonspoilage strains of L. brevis. Among 600 primers, three were found to amplify a single locus highly specific to beer-spoilage strains. DNA sequencing of this locus revealed a three-part operon encoding a putative glycosyl transferase, membrane protein and teichoic acid glycosylation protein. PCR analysis of typical beer-spoilage lactic acid bacteria suggested that this locus is highly specific to beer-spoilage strains.
Conclusion: The cloned markers are highly specific to identify the beer-spoilage strains not only in L. brevis but also in Pediococcus damnosus, Lactobacillus collinoides and Lactobacillus coryniformis.
Significance and impact of the study: This paper proves that RAPD-PCR is an efficient method for cloning the strain-specific genes from bacteria. The markers described here is one of the most useful tools to identify the beer-spoilage strains of lactic acid bacteria.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials