Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr;13(4):629-36.
doi: 10.1016/j.str.2005.01.020.

Modulation of binding of DNA to the C-terminal domain of p53 by acetylation

Affiliations
Free article

Modulation of binding of DNA to the C-terminal domain of p53 by acetylation

Assaf Friedler et al. Structure. 2005 Apr.
Free article

Abstract

The binding of nonspecific DNA to the C-terminal negative regulatory domain (CTD) of p53 modulates its activity. The CTD is a natively unfolded region, which is subject to acetylation and phosphorylation at several residues as part of control. To measure the effect of covalent modification on binding to DNA, we synthesized a series of fluorescein-labeled CTD peptides with single and multiple acetylations at lysine residues that we had identified by NMR as making contact with DNA, and developed an analytical ultracentrifugation method to study their binding to DNA. Binding depended on ionic strength, indicating an electrostatic contribution. Monoacetylation weakened DNA binding at physiological ionic strength 2- to 3-fold, diacetylations resulted in further 2- to 3-fold decrease in the affinity, and tri- and tetraacetylations rendered DNA binding undetectable. Phosphorylation at S392 did not affect DNA binding. NMR spectroscopy showed binding to DNA did not induce significant structure into CTD, apart possibly from local helix formation.

PubMed Disclaimer

Publication types

LinkOut - more resources