Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 2;15(9):2353-8.
doi: 10.1016/j.bmcl.2005.02.091.

Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with N-hydroxysulfamides--a new zinc-binding function in the design of inhibitors

Affiliations

Carbonic anhydrase inhibitors: synthesis and inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with N-hydroxysulfamides--a new zinc-binding function in the design of inhibitors

Jean-Yves Winum et al. Bioorg Med Chem Lett. .

Abstract

A small library of N-hydroxysulfamides was synthesized by an original approach in order to investigate whether this zinc-binding function is efficient for the design of inhibitors targeting the cytosolic (hCA I and II) and transmembrane, tumor-associated (hCA IX and XII) isozymes of carbonic anhydrase (CA, EC 4.2.1.1). The parent derivative, N-hydroxysulfamide was a more potent inhibitor as compared to sulfamide or sulfamic acid against all isozymes, with inhibition constants in the range of 473 nM-4.05 microM. Its substituted n-decyl-, n-dodecyl-, benzyl-, and biphenylmethyl-derivatives were less inhibitory against hCA I (K(I)s in the range of 5.8-8.2 microM) but more inhibitory against hCA II (K(I)s in the range of 50.5-473 nM). The same situation was true for the tumor-associated isozymes, with K(I)s in the range of 353-790 nM against hCA IX and 372-874 nM against hCA XII. Some sulfamides/sulfamates possessing similar substitution patterns have also been investigated for the inhibition of these isozymes, being shown that in some particular cases sulfamides are more efficient inhibitors as compared to the corresponding sulfamates. Potent CA inhibitors targeting the cytosolic or tumor-associated CA isozymes can thus be designed from various classes of sulfonamides, sulfamides, or sulfamates and their derivatives, considering the extensive interactions in which the inhibitor and the enzyme active site are engaged, based on recent X-ray crystallographic data.

PubMed Disclaimer

Publication types

MeSH terms