Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;67(5):1762-71.
doi: 10.1111/j.1523-1755.2005.00274.x.

Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney

Affiliations
Free article

Reactive oxygen species mediate high glucose-induced plasminogen activator inhibitor-1 up-regulation in mesangial cells and in diabetic kidney

Eun Ah Lee et al. Kidney Int. 2005 May.
Free article

Abstract

Background: Plasminogen activator inhibitor-1 (PAI-1) plays an important role in remodeling of extracellular matrix (ECM) in the glomeruli. PAI-1 is up-regulated by high glucose and is overexpressed in diabetic kidney. Since reactive oxygen species (ROS) mediate ECM accumulation in diabetic glomeruli and was recently found to mediate transforming growth factor-beta1 (TGF-beta1)-induced PAI-1 up-regulation in glomerular mesangial cells, we examined the role of ROS in high glucose-induced PAI-1 expression in cultured glomerular mesangial cells and in streptozotocin-induced diabetic rat glomeruli.

Methods: Growth arrested and synchronized primary rat mesangial cells were treated with different concentrations of glucose in the presence or absence of N-acetylcysteine (NAC) or trolox, or after cellular reduced form of glutathione (GSH) depleted with DL-buthionine-(S,R)-sulfoximine (BSO). Taurine was administered to diabetic rats from 2 days to 4 weeks after streptozotocin injection. Urinary protein excretion, glomerular volume, and fractional mesangial area were measured as markers of renal injury and lipid peroxide (LPO) as an oxidative stress marker. PAI-1 mRNA expression was measured by Northern blot analysis in mesangial cells and reverse transcription-polymerase chain reaction (RT-PCR) in glomeruli, PAI-1 protein by Western blot analysis and enzyme-linked immunosorbent assay (ELISA), and plasmin activity by fluorometry.

Results: High glucose significantly increased PAI-1 mRNA and protein expression and decreased plasmin activity in mesangial cells. Equimolar concentrations of l-glucose or mannitol did not affect PAI-1 expression. BSO pretreatment significantly increased basal PAI-1 expression and amplified the response to high glucose. NAC effectively inhibited high glucose-induced, but not basal, PAI-1 expression. Reduced plasmin activity in mesangial cells by high glucose was rescued by antioxidants. Anti-TGF-beta antibody inhibited both high glucose- and H(2)O(2)-induced PAI-1 up-regulation. Taurine significantly reduced plasma LPO, glomerular PAI-1 expression, glomerular volume, fractional mesangial area, and proteinuria in streptozotocin-induced diabetic rats.

Conclusion: These results demonstrate that ROS mediate high glucose-induced up-regulation of PAI-1 expression in cultured mesangial cells and in diabetic glomeruli. Since both high glucose and TGF-beta1 induce cellular ROS and ROS mediate both high glucose- and TGF-beta1-induced PAI-1, ROS appear to amplify TGF-beta1 signaling in high glucose-induced PAI-1 up-regulation. Antioxidants can prevent accumulation of ECM protein in diabetic glomeruli partly by abrogating up-regulation of PAI-1 and suppression of plasmin activity.

PubMed Disclaimer

Publication types

MeSH terms