Estimating the mean and variance from the median, range, and the size of a sample
- PMID: 15840177
- PMCID: PMC1097734
- DOI: 10.1186/1471-2288-5-13
Estimating the mean and variance from the median, range, and the size of a sample
Abstract
Background: Usually the researchers performing meta-analysis of continuous outcomes from clinical trials need their mean value and the variance (or standard deviation) in order to pool data. However, sometimes the published reports of clinical trials only report the median, range and the size of the trial.
Methods: In this article we use simple and elementary inequalities and approximations in order to estimate the mean and the variance for such trials. Our estimation is distribution-free, i.e., it makes no assumption on the distribution of the underlying data.
Results: We found two simple formulas that estimate the mean using the values of the median (m), low and high end of the range (a and b, respectively), and n (the sample size). Using simulations, we show that median can be used to estimate mean when the sample size is larger than 25. For smaller samples our new formula, devised in this paper, should be used. We also estimated the variance of an unknown sample using the median, low and high end of the range, and the sample size. Our estimate is performing as the best estimate in our simulations for very small samples (n < or = 15). For moderately sized samples (15 < n < or = 70), our simulations show that the formula range/4 is the best estimator for the standard deviation (variance). For large samples (n > 70), the formula range/6 gives the best estimator for the standard deviation (variance). We also include an illustrative example of the potential value of our method using reports from the Cochrane review on the role of erythropoietin in anemia due to malignancy.
Conclusion: Using these formulas, we hope to help meta-analysts use clinical trials in their analysis even when not all of the information is available and/or reported.
Figures



References
-
- Hogg RV, Craig AT. Introduction to mathematical statistics. 5th. New York Toronto , Macmillan College Pub. Co. ; Maxwell Macmillan Canada ; Maxwell Macmillan International; 1995. p. xi, 564.
-
- Mood AMF, Graybill FA, Boes DC. Introduction to the theory of statistics. 3d. New York, , McGraw-Hill; 1974. p. xvi, 564.
-
- Petiti DB. Meta-analysis, decision analysis and cost-effectiveness analysis. Methods for quantitative synthesis in medicine. 2nd ed. New York , Oxford press; 2000.
-
- Rizzo JD, Lichtin AE, Woolf SH, Seidenfeld J, Bennett CL, Cella D, Djulbegovic B, Goode MJ, Jakubowski AA, Lee SJ, Miller CB, Rarick MU, Regan DH, Browman GP, Gordon MS. Use of epoetin in patients with cancer: evidence-based clinical practice guidelines of the American Society of Clinical Oncology and the American Society of Hematology. J Clin Oncol. 2002;20:4083–4107. doi: 10.1200/JCO.2002.07.177. - DOI - PubMed
-
- Bohlius J, Langensiepen S, Schwarzer G, Seidenfeld J, Piper M, Bennet C, Engert A. Erythropoietin for patients with malignant disease. . Cochrane Database Syst Rev. 2004:CD003407.. - PubMed
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical