Segmentation of cDNA microarray spots using markov random field modeling
- PMID: 15840703
- DOI: 10.1093/bioinformatics/bti455
Segmentation of cDNA microarray spots using markov random field modeling
Abstract
Motivation: Spot segmentation is a critical step in microarray gene expression data analysis. Therefore, the performance of segmentation may substantially affect the results of subsequent stages of the analysis, such as the detection of differentially expressed genes. Several methods have been developed to segment microarray spots from the surrounding background. In this study, we have proposed a new approach based on Markov random field (MRF) modeling and tested its performance on simulated and real microarray images against a widely used segmentation method based on Mann-Whitney test adopted by QuantArray software (Boston, MA). Spot addressing was performed using QuantArray. We have also devised a simulation method to generate microarray images with realistic features. Such images can be used as gold standards for the purposes of testing and comparing different segmentation methods, and optimizing segmentation parameters.
Results: Experiments on simulated and 14 actual microarray image sets show that the proposed MRF-based segmentation method can detect spot areas and estimate spot intensities with higher accuracy.
Similar articles
-
Improving gene quantification by adjustable spot-image restoration.Bioinformatics. 2007 Sep 1;23(17):2265-72. doi: 10.1093/bioinformatics/btm337. Epub 2007 Jun 28. Bioinformatics. 2007. PMID: 17599935
-
Segmentation and intensity estimation of microarray images using a gamma-t mixture model.Bioinformatics. 2007 Feb 15;23(4):458-65. doi: 10.1093/bioinformatics/btl630. Epub 2006 Dec 12. Bioinformatics. 2007. PMID: 17166856
-
Evaluating the performance of microarray segmentation algorithms.Bioinformatics. 2006 Dec 1;22(23):2910-7. doi: 10.1093/bioinformatics/btl502. Epub 2006 Oct 10. Bioinformatics. 2006. PMID: 17032673
-
Spot detection and image segmentation in DNA microarray data.Appl Bioinformatics. 2005;4(1):1-11. doi: 10.2165/00822942-200504010-00001. Appl Bioinformatics. 2005. PMID: 16000008 Review.
-
[Progress in a research on biochip image analysis].Zhongguo Yi Liao Qi Xie Za Zhi. 2007 Mar;31(2):108-11. Zhongguo Yi Liao Qi Xie Za Zhi. 2007. PMID: 17552173 Review. Chinese.
Cited by
-
Low-complexity PDE-based approach for automatic microarray image processing.Med Biol Eng Comput. 2015 Feb;53(2):99-110. doi: 10.1007/s11517-014-1214-2. Epub 2014 Oct 29. Med Biol Eng Comput. 2015. PMID: 25351476
-
Partitioning of red blood cell aggregates in bifurcating microscale flows.Sci Rep. 2017 Mar 17;7:44563. doi: 10.1038/srep44563. Sci Rep. 2017. PMID: 28303921 Free PMC article.
-
Fully Automated Complementary DNA Microarray Segmentation using a Novel Fuzzy-based Algorithm.J Med Signals Sens. 2015 Jul-Sep;5(3):182-91. doi: 10.4103/2228-7477.161494. J Med Signals Sens. 2015. PMID: 26284175 Free PMC article.
-
Cloning-free regulated monitoring of reporter and gene expression.BMC Mol Biol. 2009 Mar 8;10:20. doi: 10.1186/1471-2199-10-20. BMC Mol Biol. 2009. PMID: 19267938 Free PMC article.
-
Using generalized procrustes analysis (GPA) for normalization of cDNA microarray data.BMC Bioinformatics. 2008 Jan 16;9:25. doi: 10.1186/1471-2105-9-25. BMC Bioinformatics. 2008. PMID: 18199333 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous