A reduced level of charged tRNAArgmnm5UCU triggers the wild-type peptidyl-tRNA to frameshift
- PMID: 15840821
- PMCID: PMC1370764
- DOI: 10.1261/rna.7256705
A reduced level of charged tRNAArgmnm5UCU triggers the wild-type peptidyl-tRNA to frameshift
Abstract
Frameshift mutations can be suppressed by a variety of differently acting external suppressors. The +1 frameshift mutation hisC3072, which has an extra G in a run of Gs, is corrected by the external suppressor mutation sufF44. We have shown that sufF44 and five additional allelic suppressor mutations are located in the gene argU coding for the minor tRNAArgmnm5UCU and alter the secondary and/or tertiary structure of this tRNA. The C61U, G53A, and C32U mutations influence the stability, whereas the C56U, C61U, G53A, and G39A mutations decrease the arginylation of tRNAArgmnm5UCU. The T-10C mutant has a base substitution in the -10 consensus sequence of the argU promoter that reduces threefold the synthesis of tRNAArgmnm5UCU . The lower amount of tRNAArgmnm5UCU or impaired arginylation, either independently or in conjunction, results in inefficient reading of the cognate AGA codon that, in turn, induces frameshifts. According to the sequence of the peptide produced from the suppressed -GGG-GAA-AGA- frameshift site, the frameshifting tRNA in the argU mutants is tRNAGlumnm5s2UUC, which decodes the GAA codon located upstream of the AGA arginine codon, and not the mutated tRNAArgmnm5UCU. We propose that an inefficient decoding of the AGA codon by a defective tRNAArgmnm5UCU stalls the ribosome at the A-site codon allowing the wild-type form of peptidyl-tRNAGlumnm5s2UUC to slip forward 1 nucleotide and thereby re-establish the ribosome in the 0-frame. Similar frame-shifting events could be the main cause of various phenotypes associated with environmental or genetically induced changes in the levels of aminoacylated tRNA.
Figures






Similar articles
-
The Escherichia coli argU10(Ts) phenotype is caused by a reduction in the cellular level of the argU tRNA for the rare codons AGA and AGG.J Bacteriol. 2004 Sep;186(17):5899-905. doi: 10.1128/JB.186.17.5899-5905.2004. J Bacteriol. 2004. PMID: 15317795 Free PMC article.
-
Frameshift suppression at tandem AGA and AGG codons by cloned tRNA genes: assigning a codon to argU tRNA and T4 tRNA(Arg).Nucleic Acids Res. 1990 Sep 11;18(17):5031-6. doi: 10.1093/nar/18.17.5031. Nucleic Acids Res. 1990. PMID: 2205835 Free PMC article.
-
Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.J Mol Biol. 2001 Jun 22;309(5):1029-48. doi: 10.1006/jmbi.2001.4717. J Mol Biol. 2001. PMID: 11399077
-
A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment.Microbiol Mol Biol Rev. 2009 Mar;73(1):178-210. doi: 10.1128/MMBR.00010-08. Microbiol Mol Biol Rev. 2009. PMID: 19258537 Free PMC article. Review.
-
Translational frameshifting: implications for the mechanism of translational frame maintenance.Prog Nucleic Acid Res Mol Biol. 2000;64:131-70. doi: 10.1016/s0079-6603(00)64004-7. Prog Nucleic Acid Res Mol Biol. 2000. PMID: 10697409 Review.
Cited by
-
The UGG Isoacceptor of tRNAPro Is Naturally Prone to Frameshifts.Int J Mol Sci. 2015 Jul 1;16(7):14866-83. doi: 10.3390/ijms160714866. Int J Mol Sci. 2015. PMID: 26140378 Free PMC article.
-
Methylated nucleosides in tRNA and tRNA methyltransferases.Front Genet. 2014 May 23;5:144. doi: 10.3389/fgene.2014.00144. eCollection 2014. Front Genet. 2014. PMID: 24904644 Free PMC article. Review.
-
Mechanisms and biomedical implications of -1 programmed ribosome frameshifting on viral and bacterial mRNAs.FEBS Lett. 2019 Jul;593(13):1468-1482. doi: 10.1002/1873-3468.13478. Epub 2019 Jun 20. FEBS Lett. 2019. PMID: 31222875 Free PMC article. Review.
-
Trm9-Catalyzed tRNA Modifications Regulate Global Protein Expression by Codon-Biased Translation.PLoS Genet. 2015 Dec 15;11(12):e1005706. doi: 10.1371/journal.pgen.1005706. eCollection 2015 Dec. PLoS Genet. 2015. PMID: 26670883 Free PMC article.
-
Alterations in the two globular domains or in the connecting alpha-helix of bacterial ribosomal protein L9 induces +1 frameshifts.J Bacteriol. 2007 Oct;189(19):7024-31. doi: 10.1128/JB.00710-07. Epub 2007 Jul 27. J Bacteriol. 2007. PMID: 17660285 Free PMC article.
References
-
- Atkins, J.F., Herr, A.J., Massire, C., O’Connor, M., Ivanov, I., and Gesteland, R.F. 2000. Poking a hole in the sanctity of the triplet code: Inferences for framing. In The ribosome: Structure, function, and cellular interaction (eds. R.A. Garrett et al.), pp. 369–383. American Society for Microbiology, Washington, DC.
-
- Auffinger, P. and Westhof, E. 1999. Singly and bifurcated hydrogen-bonded base-pairs in tRNA anticodon hairpins and ribozymes. J. Mol. Biol. 292: 467–483. - PubMed
-
- Barak, Z., Gallant, J., Lindsley, D., Kwieciszewki, B., and Heidel, D. 1996. Enhanced ribosome frameshifting in stationary phase cells. J. Mol. Biol. 263: 140–148. - PubMed
-
- Björk, G.R., Wikström, P.M., and Byström, A.S. 1989. Prevention of translational frameshifting by the modified nucleoside 1-methyl-guanosine. Science 244: 986–989. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous