Parameters affecting the X-ray dose absorbed by macromolecular crystals
- PMID: 15840910
- DOI: 10.1107/S0909049505003262
Parameters affecting the X-ray dose absorbed by macromolecular crystals
Abstract
The lifetime of a macromolecular crystal in an X-ray beam is assumed to be limited by the absorbed dose. This dose, expressed in Gray (Gy = J kg(-1)), is a function of a number of parameters: the absorption coefficients of the constituent atoms of the crystal, the number of molecules per asymmetric unit, the beam energy, flux, size and profile, the crystal size, and the total irradiation time. The effects of these variables on the predicted absorbed dose, calculated using the program RADDOSE, are discussed and are illustrated with reference to the irradiation of a selenomethionine protein crystal of unknown structure. The results of RADDOSE can and will in the future be used to inform the data collection procedure as it sets a theoretical upper limit on the total exposure time at a certain X-ray source. However, as illustrated with an example for which the experimental data are compared with prediction, the actual lifetime of a crystal could become shorter in those cases where specific damage breaks down crucial crystal contacts.
Similar articles
-
Cryocooling and radiation damage in macromolecular crystallography.Acta Crystallogr D Biol Crystallogr. 2006 Jan;62(Pt 1):32-47. doi: 10.1107/S0907444905034207. Epub 2005 Dec 14. Acta Crystallogr D Biol Crystallogr. 2006. PMID: 16369092 Review.
-
Towards an understanding of radiation damage in cryocooled macromolecular crystals.J Synchrotron Radiat. 2005 May;12(Pt 3):257-60. doi: 10.1107/S0909049505007132. Epub 2005 Apr 14. J Synchrotron Radiat. 2005. PMID: 15840908
-
Beam-size effects in radiation damage in insulin and thaumatin crystals.J Synchrotron Radiat. 2005 May;12(Pt 3):261-7. doi: 10.1107/S0909049505003298. Epub 2005 Apr 14. J Synchrotron Radiat. 2005. PMID: 15840909
-
How to avoid premature decay of your macromolecular crystal: a quick soak for long life.Structure. 2006 Jul;14(7):1099-105. doi: 10.1016/j.str.2006.05.015. Structure. 2006. PMID: 16843891
-
Efficient use of synchrotron radiation for macromolecular diffraction data collection.Prog Biophys Mol Biol. 2005 Oct;89(2):153-72. doi: 10.1016/j.pbiomolbio.2004.09.004. Prog Biophys Mol Biol. 2005. PMID: 15910916 Review.
Cited by
-
X-ray-driven chemistry and conformational heterogeneity in atomic resolution crystal structures of bacterial dihydrofolate reductases.bioRxiv [Preprint]. 2023 Nov 8:2023.11.07.566054. doi: 10.1101/2023.11.07.566054. bioRxiv. 2023. PMID: 37986818 Free PMC article. Preprint.
-
Doses for X-ray and electron diffraction: New features in RADDOSE-3D including intensity decay models.Protein Sci. 2024 Jul;33(7):e5005. doi: 10.1002/pro.5005. Protein Sci. 2024. PMID: 38923423 Free PMC article.
-
A fast selenium derivatization strategy for crystallization and phasing of RNA structures.RNA. 2009 Apr;15(4):707-15. doi: 10.1261/rna.1499309. Epub 2009 Feb 18. RNA. 2009. PMID: 19228585 Free PMC article.
-
Estimate your dose: RADDOSE-3D.Protein Sci. 2018 Jan;27(1):217-228. doi: 10.1002/pro.3302. Epub 2017 Nov 6. Protein Sci. 2018. PMID: 28921782 Free PMC article.
-
Temperature-dependent macromolecular X-ray crystallography.Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):437-46. doi: 10.1107/S0907444910002702. Epub 2010 Mar 24. Acta Crystallogr D Biol Crystallogr. 2010. PMID: 20382997 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources