Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;30(4):293-8.
doi: 10.1097/01.mpa.0000158028.76666.76.

Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus

Affiliations
Review

Pancreatic islet renin angiotensin system: its novel roles in islet function and in diabetes mellitus

Po Sing Leung et al. Pancreas. 2005 May.

Erratum in

  • Pancreas. 2005 Aug;31(2):table of contents

Abstract

Several regulatory systems are implicated in the regulation of islet function and beta cell mass. Of great interest in this context are some endocrine, paracrine/autocrine, and intracrine regulators. These include, to name but a few, the gut peptides, growth factors, prostaglandins, and some vasoactive mediators such as nitric oxide, bradykinins, endothelins, and angiotensins. Apart from its potent vasoconstrictor actions, the renin-angiotensin system (RAS) that generates angiotensin II has several novel functions-stimulation and inhibition of cell proliferation; induction of apoptosis; generation of reactive oxygen species; regulation of hormone secretion; and proinflammatory and profibrogenic actions. In the pancreas, recent evidence supports the presence of an islet RAS, which is subject to activation by islet transplantation and diabetes. Such a local islet RAS, if activated, may drive islet fibrosis and reduce islet blood flow, oxygen tension, and insulin biosynthesis. Moreover, activation of an islet RAS may drive the synthesis of reactive oxygen species, cause oxidative stress-induced beta cell dysfunction and apoptosis, and thus contribute to the islet dysfunction seen in type 2 diabetes and after islet transplantation. Blockade of the RAS could contribute to the development of novel therapeutic strategies in the prevention and treatment of patients with diabetes and in islet transplantation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources