Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Oct;30(10):1841-55.
doi: 10.1038/sj.npp.1300743.

Disruption of rat forebrain development by glucocorticoids: critical perinatal periods for effects on neural cell acquisition and on cell signaling cascades mediating noradrenergic and cholinergic neurotransmitter/neurotrophic responses

Affiliations
Free article
Comparative Study

Disruption of rat forebrain development by glucocorticoids: critical perinatal periods for effects on neural cell acquisition and on cell signaling cascades mediating noradrenergic and cholinergic neurotransmitter/neurotrophic responses

Marisa L Kreider et al. Neuropsychopharmacology. 2005 Oct.
Free article

Abstract

Glucocorticoids are the consensus treatment for the prevention of respiratory distress in preterm infants, but there is evidence for increased incidence of neurodevelopmental disorders as a result of their administration. We administered dexamethasone (Dex) to developing rats at doses below or within the range of those used clinically, evaluating the effects on forebrain development with exposure in three different stages: gestational days 17-19, postnatal days 1-3, or postnatal days 7-9. At 24 h after the last dose, we evaluated biomarkers of neural cell acquisition and growth, synaptic development, neurotransmitter receptor expression, and synaptic signaling mediated by adenylyl cyclase (AC). Dex impaired the acquisition of neural cells, with a peak effect when given in the immediate postnatal period. In association with this defect, Dex also elicited biphasic effects on cholinergic presynaptic development, promoting synaptic maturation at a dose (0.05 mg/kg) well below those used therapeutically, whereas the effect was diminished or lost when doses were increased to 0.2 or 0.8 mg/kg. Dex given postnatally also disrupted the expression of adrenergic receptors known to participate in neurotrophic modeling of the developing brain and evoked massive induction of AC activity. As a consequence, disparate receptor inputs all produced cyclic AMP overproduction, a likely contributor to disrupted patterns of cell replication, differentiation, and apoptosis. Superimposed on the heterologous AC induction, Dex impaired specific receptor-mediated cholinergic and adrenergic signals. These results indicate that, during a critical developmental period, Dex administration leads to widespread interference with forebrain development, likely contributing to eventual, adverse neurobehavioral outcomes.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources