Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar-Apr;19(2):459-65.
doi: 10.1118/1.596834.

Dual energy x-ray absorptiometry: the effects of beam hardening on bone density measurements

Affiliations

Dual energy x-ray absorptiometry: the effects of beam hardening on bone density measurements

G M Blake et al. Med Phys. 1992 Mar-Apr.

Abstract

X-ray tubes have superseded radionuclide sources for dual photon absorptiometry of the spine and hip. However, the use of a polyenergetic spectrum is a potential source of error for x-ray absorptiometers since beam hardening may result in a nonlinear measurement scale for bone mineral density (BMD). A quantitative study of the effects of beam hardening on measurements made with a commercial dual energy x-ray scanner has been performed. Bone was represented by layers of aluminum of linearly increasing thickness which were scanned under water thicknesses ranging from 0 to 25 cm to represent different body thicknesses of soft tissue. Beam hardening had two effects on measured BMD: (i) at a constant true BMD, measured BMD varied with water thickness; (ii) at a constant water thickness, the BMD scale was not precisely linear. For conditions appropriate to spine and hip studies (BMD) values in the range 0.7 to 1.4 g/cm2 and body thickness between 15 and 25 cm) the maximum deviation of measured BMD from a linear scale was 0.023 g/cm2, while the root-mean-square deviation (0.01 g/cm2) was comparable to the measurement precision for a spine or femoral neck scan (about 1%). The largest departures from linearity were found to occur at the thinnest water thicknesses for BMD values in the range 0.2 to 0.6 g/cm2. The effect of scale nonlinearity on the results of longitudinal studies was examined: for a spine scan at 20-cm body thickness, measured changes in BMD slightly overestimated the true change and implied an error of 0.15%/year for a measurement of a true rate of loss of 3% year in a postmenopausal woman.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources