Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan-Feb;22(1):45-54.
doi: 10.1017/S0952523805221053.

Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials

Affiliations

Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials

Andrew C James et al. Vis Neurosci. 2005 Jan-Feb.

Abstract

Multifocal VEP (mfVEP) responses were obtained from 13 normal human subjects for nine test conditions, covering three viewing conditions (dichoptic and left and right monocular), and three different temporal stimulation forms (rapid contrast reversal, rapid pattern pulse presentation, and slow pattern pulse presentation). The rapid contrast reversal stimulus had pseudorandomized reversals of checkerboards in each visual field region at a mean rate of 25 reversals/s, similar to most mfVEP studies to date. The rapid pattern pulse presentation had pseudorandomized presentations of a checkerboard for one frame, interspersed with uniform grey frames, with a mean rate of 25 presentations/s per region per eye. The slow pattern pulse stimulus had six presentations/s per region per eye. Recording time was 5.3 min/condition. For dichoptic presentation slow pattern pulse responses were 4.6 times larger in amplitude than the contrast reversal responses. Binocular suppression was greatest for the contrast reversal stimulus. Consideration of the signal-to-noise ratios indicated that to achieve a given level of reliability, slow pattern pulse stimuli would require half the recording time of contrast reversal stimuli for monocular viewing, and 0.4 times the recording time for dichoptically presented stimuli. About half the responses to the slow pattern pulse stimuli had peak value exceeding five times their estimated standard error. Responses were about 20% smaller in the upper visual field locations. Space-time decomposition showed that responses to slow pattern pulse were more consistent across visual field locations. We conclude that the pattern pulse stimuli, which we term temporally sparse, maintain the visual system in a high contrast gain state. This more than compensates for the smaller number of presentations in the run, and provides signal-to-noise advantages that may be valuable in clinical application.

PubMed Disclaimer

LinkOut - more resources