Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Sep;15(9):29R-42R.
doi: 10.1093/glycob/cwi065. Epub 2005 Apr 20.

Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases

Affiliations
Review

Modeling bacterial UDP-HexNAc: polyprenol-P HexNAc-1-P transferases

Neil P Price et al. Glycobiology. 2005 Sep.

Abstract

Protein N-glycosylation in eukaryotes and peptidoglycan biosynthesis in bacteria are both initiated by the transfer of a D-N-acetylhexosamine 1-phosphate to a membrane-bound polyprenol phosphate. These reactions are catalyzed by a family of transmembrane proteins known as the UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-phosphate transferases. The sole eukaryotic member of this family, the d-N-acetylglucosamine 1-phosphate transferase (GPT), is specific for UDP-GlcNAc as the donor substrate and uses dolichol phosphate as the membrane-bound acceptor. The bacterial translocases, MraY, WecA, and WbpL, utilize undecaprenol phosphate as the acceptor substrate, but differ in their specificity for the UDP-sugar donor substrate. The structural basis of this sugar nucleotide specificity is uncertain. However, potential carbohydrate recognition (CR) domains have been identified within the C-terminal cytoplasmic loops of MraY, WecA, and WbpL that are highly conserved in family members with the same UDP-N-acetylhexosamine specificity. This review focuses on the catalytic mechanism and substrate specificity of these bacterial UDP-D-N-acetylhexosamine: polyprenol phosphate D-N-acetylhexosamine 1-P transferases and may provide insights for the development of selective inhibitors of cell wall biosynthesis.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources