Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Dec;4(4):267-79.

Atiprimod is an inhibitor of cancer cell proliferation and angiogenesis

Affiliations
  • PMID: 15844657

Atiprimod is an inhibitor of cancer cell proliferation and angiogenesis

Kunwar Shailubhai et al. J Exp Ther Oncol. 2004 Dec.

Abstract

Atiprimod, a novel compound belonging to the azaspirane class of cationic amphiphilic drugs, exhibits both anti-proliferative and anti-angiogenic activities. Atiprimod inhibited proliferation of all human cancer cell lines included in the National Cancer Institute panel with IC50 values in the low micromolar range. Notably, metastatic cell lines were more sensitive to the compound compared to the non-metastatic cell lines derived from the same tumor tissue types. Atiprimod also induced apoptosis and activated both caspase-9 and caspase-3 in T84 colon carcinoma cells. Hence, the anti-proliferative activity could partly be due to its pro-apoptotic activity. Regarding angiogenesis in vitro, atiprimod inhibited both bFGF and VEGF induced proliferation and migration of human umbilical vein endothelial cells (HUVECs), resulting in disruption of cord formation. In addition, atiprimod also suppressed formation of new blood vessels in a chorioallantoic membrane assay. Previous studies have also shown that atiprimod treatment reduced production of IL-6, VEGF and inhibited activation of Stat3, a constitutively activated protein in majority of human cancers. Together these findings suggest that atiprimod acts on several molecules that are essential for tumor growth, invasion and metastasis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources