Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Mar;21(6):1617-25.
doi: 10.1111/j.1460-9568.2005.03984.x.

Presynaptic 'Ca2.3-containing' E-type Ca channels share dual roles during neurotransmitter release

Affiliations
Review

Presynaptic 'Ca2.3-containing' E-type Ca channels share dual roles during neurotransmitter release

M A Kamp et al. Eur J Neurosci. 2005 Mar.

Abstract

Ca2+ influx into excitable cells is a prerequisite for neurotransmitter release and regulated exocytosis. Within the group of ten cloned voltage-gated Ca2+ channels, the Ca(v)2.3-containing E-type Ca2+ channels are involved in various physiological processes, such as neurotransmitter release and exocytosis together with other voltage-gated Ca2+ channels of the Ca(v)1, Ca(v)2 and Ca(v)3 subfamily. However, E-type Ca2+ channels also exhibit several subunit-specific features, most of which still remain poorly understood. Ca(v)2.3-containing R-type channels (here called 'E-type channels') are also located in presynaptic terminals and interact with some synaptic vesicle proteins, the so-called SNARE proteins, although lacking the classical synprint interaction site. E-type channels trigger exocytosis and are also involved in long-term potentiation. Recently, it was shown that the interaction of Ca(v)2.3 with the EF-hand motif containing protein EFHC1 is involved in the aetiology and pathogenesis of juvenile myoclonic epilepsy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources