Role of extracellular Ca2+ in gating of CaV1.2 channels
- PMID: 15845581
- PMCID: PMC1464545
- DOI: 10.1113/jphysiol.2005.086561
Role of extracellular Ca2+ in gating of CaV1.2 channels
Abstract
We examined changes in ionic and gating currents in Ca(V)1.2 channels when extracellular Ca(2+) was reduced from 10 mm to 0.1 microm. Saturating gating currents decreased by two-thirds (K(D) approximately 40 microm) and ionic currents increased 5-fold (K(D) approximately 0.5 microm) due to increasing Na(+) conductance. A biphasic time dependence for the activation of ionic currents was observed at low [Ca(2+)], which appeared to reflect the rapid activation of channels that were not blocked by Ca(2+) and a slower reversal of Ca(2+) blockade of the remaining channels. Removal of Ca(2+) following inactivation of Ca(2+) currents showed that Na(+) currents were not affected by Ca(2+)-dependent inactivation. Ca(2+)-dependent inactivation also induced a negative shift of the reversal potential for ionic currents suggesting that inactivation alters channel selectivity. Our findings suggest that activation of Ca(2+) conductance and Ca(2+)-dependent inactivation depend on extracellular Ca(2+) and are linked to changes in selectivity.
Figures
References
-
- Baukrowitz T, Yellen G. Modulation of K+ current by frequency and external [K+]: a tale of two inactivation mechanisms. Neuron. 1995;15:951–960. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous