Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;19(9):1134-6.
doi: 10.1096/fj.04-2457fje. Epub 2005 Apr 21.

MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration

Affiliations

MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration

Tongguang Wang et al. FASEB J. 2005 Jul.

Abstract

The importance of cyclooxygenase-2 (COX-2) in mediating Parkinson's disease (PD) was suggested in reports, indicating that COX-2 selective inhibitors or genetic knockout reduce 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic (DA) neurotoxicity in a mouse model of PD. However, cell types and mechanisms underlying the activation of COX-2 have not been clearly elucidated in these animal studies. Using primary neuron-glia cultures, we aimed to determine 1) whether microglia participate in 1-methyl-4-phenylpryridinium (MPP)-induced COX-2 activation and 2) whether the activation of COX-2 contributes to subsequent neurotoxicity. MPP, in a concentration-dependent manner, increased prostaglandin E2 (PGE2) production in mixed neuron-microglia cultures but not in enriched neuron, microglia, or astroglia cultures nor in mixed neuron-astroglia cultures. MPP-induced PGE2 increase was completely abolished by treatment with DuP697, a COX-2 selective inhibitor. DuP697 also significantly reduced MPP-induced DA neurotoxicity as determined by DA uptake assay. Immunocytochemistry and confocal microscopy studies showed enhanced COX-2 expression in both microglia and neurons after MPP treatment. However, neuronal increase in COX-2 expression was not totally dependent on the production of PGE2 from microglia, since microglia deficient in COX-2 only attenuated, but did not completely block, MPP-increased PGE2 production in mixed neuron-microglia cultures, suggesting that part of PGE2 production was originated from neurons. Together, these results indicate that MPP-induced COX-2 expression and subsequent PGE2 production depend on interactions between neurons and microglia. Microgliosis may also be responsible for the COX-2 activation in neurons, leading to the enhanced DA neurotoxicity, which, in turn, reinforces microgliosis. Thus inhibition of microgliosis and COX-2 activity may stop this vicious circle and be valuable strategies in PD therapy.

PubMed Disclaimer

LinkOut - more resources