Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Apr 25;579(11):2313-8.
doi: 10.1016/j.febslet.2005.02.078.

Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli

Affiliations
Free article

Role of Cys-295 on subunit interactions and allosteric regulation of phosphofructokinase-2 from Escherichia coli

Andrés Caniuguir et al. FEBS Lett. .
Free article

Abstract

In a previous work, chemical modification of Cys-238 of Escherichia coli Pfk-2 raised concerns on the importance of the dimeric state of Pfk-2 for enzyme activity, whereas modification of Cys-295 impaired the enzymatic activity and the MgATP-induced tetramerization of the enzyme. The results presented here demonstrate that the dimeric state of Pfk-2 is critical for the stability and the activity of the enzyme. The replacement of Cys-238 by either Ala or Phe shows no effect on the kinetic parameters, allosteric inhibition, dimer stability and oligomeric structure of Pfk-2. However, the mutation of Cys-295 by either Ala or Phe provokes a decrease in the k(cat) value and an increment in the K(m) values for both substrates. We suggest that the Cys-295 residue participates in intersubunit interactions in the tetramer since the Cys-295-Phe mutant exhibits higher tetramer stability, which in turn results in an increase in the fructose-6-P concentration required for the reversal of the MgATP inhibition relative to the wild type enzyme.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources