Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 May;72(5):301-25.
doi: 10.1016/j.plefa.2005.02.004.

New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy

Affiliations
Review

New insights into the retinal circulation: inflammatory lipid mediators in ischemic retinopathy

Pierre Hardy et al. Prostaglandins Leukot Essent Fatty Acids. 2005 May.

Abstract

Ischemic proliferative retinopathy develops in various retinal disorders, including retinal vein occlusion, diabetic retinopathy and retinopathy of prematurity. Ischemic retinopathy remains a common cause of visual impairment and blindness in the industrialized world due to relatively ineffective treatment. Oxygen-induced retinopathy (OIR) is an established model of retinopathy of prematurity associated with vascular cell injury culminating in microvascular degeneration, which precedes an abnormal neovascularization. The retina is a tissue particularly rich in polyunsaturated fatty acids and the ischemic retina becomes highly sensitive to lipid peroxidation initiated by oxygenated free radicals. Consequently, the retina constitutes an excellent model for testing the functional consequences of membrane lipid peroxidation. Retinal tissue responds to physiological and pathophysiological stimuli by the activation of phospholipases and the consequent release from membrane phospholipids of biologically active metabolites. Activation of phospholipase A(2) is the first step in the synthesis of two important classes of lipid second messengers, the eicosanoids and a membrane-derived phospholipid mediator platelet-activating factor (PAF). These lipid mediators accumulate in the retina in response to injury and a physiologic role of these metabolites in retinal vasculature remains for the most part to be determined; albeit proposed roles have been suggested for some. The eicosanoids, in particular the prostanoids, thromboxane (TXA2) and PAF are abundantly generated following an oxidant stress and contribute to neurovascular injury. TXA2 and PAF play an important role in the retinal microvacular degeneration of OIR by directly inducing endothelial cell death and potentially could contribute to the pathogenesis of ischemic retinopathies. Despite these advances there are still a number of important questions that remain to be answered before we can confidently target pathological signals. This review focuses on mechanisms that precede the development of neovascularization, most notably regarding the role of lipid mediators that partake in microvascular degeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources