Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;23(5):601-6.
doi: 10.1038/nbt1088. Epub 2005 Apr 24.

Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain

Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain

Viviane Tabar et al. Nat Biotechnol. 2005 May.

Abstract

Human embryonic stem (hES) cells provide a potentially unlimited cell source for regenerative medicine. Recently, differentiation strategies were developed to direct hES cells towards neural fates in vitro. However, the interaction of hES cell progeny with the adult brain environment remains unexplored. Here we report that hES cell-derived neural precursors differentiate into neurons, astrocytes and oligodendrocytes in the normal and lesioned brain of young adult rats and migrate extensively along white matter tracts. The differentiation and migration behavior of hES cell progeny was region specific. The hES cell-derived neural precursors integrated into the endogenous precursor pool in the subventricular zone, a site of persistent neurogenesis. Like adult neural stem cells, hES cell-derived precursors traveled along the rostral migratory stream to the olfactory bulb, where they contributed to neurogenesis. We found no evidence of cell fusion, suggesting that hES cell progeny are capable of responding appropriately to host cues in the subventricular zone.

PubMed Disclaimer

Similar articles

Cited by

Publication types