Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr;31(2):139-49.
doi: 10.1055/s-2005-869519.

Overview of the P2 receptors

Affiliations
Review

Overview of the P2 receptors

Jean-Marie Boeynaems et al. Semin Thromb Hemost. 2005 Apr.

Abstract

The release of nucleotides in extracellular fluids can result from cell necrosis, exocytosis of secretory granules (such as platelet dense granules), or efflux through membrane channels. In addition, recent evidence suggests that vesicular trafficking is an important pathway of nucleotide release. Once in the extracellular fluids, they are rapidly degraded by ectonucleotidases, such as CD39, that play a key role in neutralizing the platelet aggregatory action of adenosine diphosphate (ADP), and act on two families of receptors: the ionotropic P2X receptors and the G-protein-coupled P2Y receptors. The family of P2X receptors encompasses seven genes. Currently, there are eight genuine P2Y receptors that can be subdivided into two structurally distinct subfamilies. Whereas P2X receptors are receptors of ATP, the different P2Y receptors are activated by distinct nucleotides, diphosphates or triphosphates, or purines or pyrimidines, some of them being conjugated to sugars. The study of knockout mice has demonstrated that P2X receptors play important roles in the neurogenic control of smooth muscle contraction, in pain and visceral perception, and in macrophage functions. The phenotype of P2Y null mice so far is more restricted: inhibition of platelet aggregation to ADP and increased bleeding time in P2Y (1)(-/-) and P2Y (12)(-/-) mice and lack of epithelial responsiveness to nucleotides in airways (P2Y (2)(-/-)) and intestine (P2Y (4)(0/-)).

PubMed Disclaimer

MeSH terms