Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Apr;4(2):177-81.
doi: 10.2174/1568010053586246.

Matrix metalloproteinase-9 and airway remodeling in asthma

Affiliations
Review

Matrix metalloproteinase-9 and airway remodeling in asthma

Hiroyuki Ohbayashi et al. Curr Drug Targets Inflamm Allergy. 2005 Apr.

Abstract

Airway remodeling is a major change responsible for irreversible asthmatic airflow restriction. The Th-2 cytokines-dominant eosinophilic inflammatory mechanism cannot fully explain the progressive subepithelial fibrosis and structural changes in the extracellular matrix (ECM). Matrix metalloproteinases (MMPs) are the key enzymes responsible for ECM degradation. MMPs are normally produced and secreted under the tight regulation of, at least, 3 different levels: the gene transcriptional level, the activation of the latent form of enzyme, and the inactivation by specific endogenous inhibitors. In asthmatic condition, as shown by the large amount of accumulated evidence in this review, MMP-9 is the most relevant among the 23 kinds of human MMPs at present detected. Although the mechanism is still under investigation and not accurately known, the imbalance between MMP-9 and tissue inhibitor of metalloproteinase-1 is considered a major theory to explain the progression of asthmatic airway remodeling. Various inflammatory cytokines including TGF beta and growth factors play a pivotal role in MMP-9 production and secretion. This review mainly focuses upon the pivotal role of MMP-9 in airway remodeling, and also upon major cellular source of MMP-9 in asthma such as eosinophils, neutrophils, epithelial cells and alveolar macrophages. This review also refers to the partial contribution of nitric oxide to MMP-9 in asthma.

PubMed Disclaimer

MeSH terms