Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May;272(9):2141-51.
doi: 10.1111/j.1742-4658.2005.04605.x.

Identification of small scale biochemical networks based on general type system perturbations

Affiliations
Free article

Identification of small scale biochemical networks based on general type system perturbations

Henning Schmidt et al. FEBS J. 2005 May.
Free article

Abstract

New technologies enable acquisition of large data-sets containing genomic, proteomic and metabolic information that describe the state of a cell. These data-sets call for systematic methods enabling relevant information about the inner workings of the cell to be extracted. One important issue at hand is the understanding of the functional interactions between genes, proteins and metabolites. We here present a method for identifying the dynamic interactions between biochemical components within the cell, in the vicinity of a steady-state. Key features of the proposed method are that it can deal with data obtained under perturbations of any system parameter, not only concentrations of specific components, and that the direct effect of the perturbations does not need to be known. This is important as concentration perturbations are often difficult to perform in biochemical systems and the specific effects of general type perturbations are usually highly uncertain, or unknown. The basis of the method is a linear least-squares estimation, using time-series measurements of concentrations and expression profiles, in which system states and parameter perturbations are estimated simultaneously. An important side-effect of also employing estimation of the parameter perturbations is that knowledge of the system's steady-state concentrations, or activities, is not required and that deviations from steady-state prior to the perturbation can be dealt with. Time derivatives are computed using a zero-order hold discretization, shown to yield significant improvements over the widely used Euler approximation. We also show how network interactions with dynamics that are too fast to be captured within the available sampling time can be determined and excluded from the network identification. Known and unknown moiety conservation relationships can be processed in the same manner. The method requires that the number of samples equals at least the number of network components and, hence, is at present restricted to relatively small-scale networks. We demonstrate herein the performance of the method on two small-scale in silico genetic networks.

PubMed Disclaimer

Publication types

LinkOut - more resources