Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 20;348(5):1273-82.
doi: 10.1016/j.jmb.2005.02.070. Epub 2005 Mar 29.

Rapid creation of a novel protein function by in vitro coevolution

Affiliations

Rapid creation of a novel protein function by in vitro coevolution

Zhilei Chen et al. J Mol Biol. .

Abstract

We have developed a simple and efficient method for creation of novel protein functions in an existing protein scaffold. The in vitro coevolution method involves design of a hypothetical pathway for the target function followed by stepwise directed evolution of the corresponding protein along the pathway. As a test case, this strategy was used to engineer variants of human estrogen receptor alpha ligand-binding domain (hERalphaLBD) with novel corticosterone activity. Two steroids, testosterone and progesterone, that provide a progressive structural bridge between 17beta-estradiol and corticosterone, were chosen to assist the directed evolution of hERalphaLBD. A total of approximately 10(6) variants were screened in four rounds of random mutagenesis, resulting in two hERalphaLBD variants that respond to corticosterone. Creation of this new ligand activity required the presence of four simultaneous mutations. In addition, several required mutations were located outside the ligand binding pocket and yet exerted important action on ligand binding. Our results demonstrate the ability of in vitro coevolution to create novel protein function that is difficult or impossible to achieve by existing protein engineering approaches and also shed light on the natural evolution of nuclear hormone receptors. This in vitro coevolution approach should provide a powerful, broadly applicable tool for engineering biological molecules and systems with novel functions.

PubMed Disclaimer

Publication types

LinkOut - more resources