Are acidic and basic groups in buried proteins predicted to be ionized?
- PMID: 15854661
- DOI: 10.1016/j.jmb.2005.03.051
Are acidic and basic groups in buried proteins predicted to be ionized?
Abstract
Ionizable residues play essential roles in proteins, modulating protein stability, fold and function. Asp, Glu, Arg, and Lys make up about a quarter of the residues in an average protein. Multi-conformation continuum electrostatic (MCCE) calculations were used to predict the ionization states of all acidic and basic residues in 490 proteins. Of all 36,192 ionizable residues, 93.5% were predicted to be ionized. Thirty-five percent have lost 4.08 kcal/mol solvation energy (DeltaDeltaG(rxn)) sufficient to shift a pK(a) by three pH units in the absence of other interactions and 17% have DeltaDeltaG(rxn) sufficient to shift pK(a) by five pH units. Overall 85% of these buried residues (DeltaDeltaG(rxn)>5DeltapK units) are ionized, including 92% of the Arg, 86% of the Asp, 77% of the Glu, and 75% of the Lys. Ion-pair interactions stabilize the ionization of both acids and bases. The backbone dipoles stabilize anions more than cations. The interactions with polar side-chains are also different for acids and bases. Asn and Gln stabilize all charges, Ser and Thr stabilize only acids while Tyr rarely stabilize Lys. Thus, hydroxyls are better hydrogen bond donors than acceptors. Buried ionized residues are more likely to be conserved than those on the surface. There are 3.95 residues buried per 100 residues in an average protein.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
