Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn
- PMID: 15857638
- DOI: 10.1016/j.chemosphere.2004.11.038
Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn
Abstract
Groundwater and wastewater contaminated with chlorinated organic compounds (COCs) can be treated with zero-valent metals. The practicality of this treatment method depends on the reduction rates of the target compounds and their byproducts. In this study, nano-scale Fe and Fe/Ni particles were synthesized so that they could be used to rapidly degrade carbon tetrachloride (CT) and chloroform (CF). Their BET surface areas were around two orders higher than those of commercial micro-scale Fe and Zn particles. Batch reduction experiments carried out with a metal loading of 2.5 gl(-1) showed that complete reduction of CT by the nano-scale Fe/Ni and Fe particles could be achieved within 20 min and 60 min, respectively. With the commercial micro-scale Fe and Zn particles applied at 125 gl(-1), complete CT reduction could only be achieved after 4h and 1.5h, respectively. Reductions of CT and CF with the nano-scale particles followed pseudo-first-order kinetics, and the specific reaction rate constants with the nano-scale Fe/Ni particles were 2-8 times higher than those of the nano-scale Fe particles. CT was degraded through hydrogenolysis to CF, and subsequently via both complete reduction pathway to methane and hydrogenolysis pathway to dichloromethane (DCM). Significantly more methane was generated with the use of the nano-scale Fe/Ni particles than with the nano-scale Fe particles. While the commercial Zn particles were more reactive than the commercial Fe particles, they failed to transform CT directly into methane, causing accumulation of DCM in the aqueous phase.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical