Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 1;118(Pt 9):1799-809.
doi: 10.1242/jcs.02300.

Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation

Affiliations

Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation

Piet H M Lommerse et al. J Cell Sci. .

Abstract

Recent studies show that the partitioning of the small GTPase H-Ras in different types of membrane microdomains is dependent on guanosine 5'-triphosphate (GTP)-loading of H-Ras. Detailed knowledge about the in vivo dynamics of this phenomenon is limited. In this report, the effect of the activation of H-Ras on its microdomain localization was studied by single-molecule fluorescence microscopy. Individual human H-Ras molecules fused to the enhanced yellow fluorescent protein (eYFP) were imaged in the dorsal plasma membrane of live mouse cells and their diffusion behavior was analyzed. The diffusion of a constitutively inactive (S17N) and constitutively active (G12V) mutant of H-Ras was compared. Detailed analysis revealed that for both mutants a major, fast-diffusing population and a minor, slow-diffusing population were present. The slow-diffusing fraction of the active mutant was confined to 200 nm domains, which were not observed for the inactive mutant. In line with these results we observed that the slow-diffusing fraction of wild-type H-Ras became confined to 200 nm domains upon insulin-induced activation of wild-type H-Ras. This activation-dependent localization of H-Ras to 200 nm domains, for the first time directly detected in live cells, supports the proposed relationship between H-Ras microdomain localization and activation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources