Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips
- PMID: 15861467
- DOI: 10.1002/elps.200410395
Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips
Abstract
Separation of sodium dodecyl sulfate (SDS)-protein complexes is difficult on plastic microchips due to protein adsorption onto the wall. In this paper, we elucidated the reasons for the difficulties in separating SDS-protein complexes on plastic microchips, and we then demonstrated an effective method for separating proteins using polymethyl methacrylate (PMMA) microchips. Separation difficulties were found to be dependent on adsorption of SDS onto the hydrophobic surface of the channel, by which cathodic electroosmotic flow (EOF; reversed flow) was generated. Our developed method effectively utilized the reversed flow from this cathodic EOF as a driving force for sample proteins using permanently uncoated but dynamic SDS-coated PMMA microchips. High-speed (6 s) separation of proteins and peptides up to 116 kDa was successfully achieved using this system.
Similar articles
-
High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.Electrophoresis. 2005 Jul;26(14):2687-91. doi: 10.1002/elps.200410337. Electrophoresis. 2005. PMID: 15937980
-
Rinse and evaporation coating of poly(methyl methacrylate) microchip for separation of sodium dodecyl sulfate-protein complex.J Chromatogr A. 2008 May 30;1192(2):289-93. doi: 10.1016/j.chroma.2008.03.012. Epub 2008 Mar 18. J Chromatogr A. 2008. PMID: 18430430
-
Hybrid dynamic coating with n-dodecyl beta-D-maltoside and methyl cellulose for high-performance carbohydrate analysis on poly(methyl methacrylate) chips.Anal Chem. 2006 Mar 1;78(5):1452-8. doi: 10.1021/ac051702f. Anal Chem. 2006. PMID: 16503593
-
Wall coating for capillary electrophoresis on microchips.Electrophoresis. 2004 Nov;25(21-22):3589-601. doi: 10.1002/elps.200406113. Electrophoresis. 2004. PMID: 15565710 Review.
-
Recent innovations in protein separation on microchips by electrophoretic methods.Electrophoresis. 2008 Jan;29(1):157-78. doi: 10.1002/elps.200700347. Electrophoresis. 2008. PMID: 18058769 Review.
Cited by
-
Electrophoretically induced aqueous flow through single-walled carbon nanotube membranes.Nat Nanotechnol. 2012 Jan 15;7(2):133-9. doi: 10.1038/nnano.2011.240. Nat Nanotechnol. 2012. PMID: 22245860 Free PMC article.
-
Microchip immunoaffinity electrophoresis of antibody-thymidine kinase 1 complex.Electrophoresis. 2015 Mar;36(5):813-7. doi: 10.1002/elps.201400436. Epub 2015 Feb 3. Electrophoresis. 2015. PMID: 25486911 Free PMC article.
-
Dilution of protein-surfactant complexes: a fluorescence study.Protein Sci. 2013 Sep;22(9):1258-65. doi: 10.1002/pro.2313. Epub 2013 Aug 6. Protein Sci. 2013. PMID: 23868358 Free PMC article.
-
Thermoplastic microfluidic devices and their applications in protein and DNA analysis.Analyst. 2011 Apr 7;136(7):1288-97. doi: 10.1039/c0an00969e. Epub 2011 Jan 28. Analyst. 2011. PMID: 21274478 Free PMC article.
-
Comparison of separation modes for microchip electrophoresis of proteins.J Sep Sci. 2021 Feb;44(3):744-751. doi: 10.1002/jssc.202000883. Epub 2020 Dec 13. J Sep Sci. 2021. PMID: 33226183 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources