Evaluation of the performance of mechanisms for noise attenuation in a single-gene expression
- PMID: 15862593
- DOI: 10.1016/j.jtbi.2005.01.007
Evaluation of the performance of mechanisms for noise attenuation in a single-gene expression
Abstract
Experiments of synthetic gene regulatory modules and theoretical studies have clarified the stochastic nature of gene expression. The establishment of methods to control the fluctuation in gene expression is an indispensable step to the synthesis of robust and reliable genetic modules. In this study, we evaluate the performances of several major mechanisms to attenuate the fluctuation in a single-gene expression; noise attenuation through the control of the ratio of the transcription rate to the translation one, the interaction between synthesized proteins and background molecules, and an autoregulatory negative feedback. We analytically derive the dependence of the noise intensity on the parameter values related to elementary reaction processes, optimal conditions to attenuate the noise, and the limitation of the attenuation for those mechanisms. Our results can be an important basis for selecting the most efficient combination of the components in the design and synthesis of robust and reliable genetic modules. Furthermore, the knowledge on the performances that we obtain can also play a role in understanding the design principle of the intracellular gene regulatory networks.
Similar articles
-
On the attenuation and amplification of molecular noise in genetic regulatory networks.BMC Bioinformatics. 2006 Feb 2;7:52. doi: 10.1186/1471-2105-7-52. BMC Bioinformatics. 2006. PMID: 16457708 Free PMC article.
-
Efficient attenuation of stochasticity in gene expression through post-transcriptional control.J Mol Biol. 2004 Dec 3;344(4):965-76. doi: 10.1016/j.jmb.2004.09.073. J Mol Biol. 2004. PMID: 15544806
-
Multivariate analysis of noise in genetic regulatory networks.J Theor Biol. 2004 Aug 21;229(4):501-21. doi: 10.1016/j.jtbi.2004.04.034. J Theor Biol. 2004. PMID: 15246787
-
Stochastic and delayed stochastic models of gene expression and regulation.Math Biosci. 2010 Jan;223(1):1-11. doi: 10.1016/j.mbs.2009.10.007. Epub 2009 Oct 31. Math Biosci. 2010. PMID: 19883665 Review.
-
Rheostat control of gene expression by metabolites.Mol Cell. 2006 Oct 6;24(1):1-11. doi: 10.1016/j.molcel.2006.09.002. Mol Cell. 2006. PMID: 17018288 Review.
Cited by
-
Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series.J R Soc Interface. 2006 Jun 22;3(8):383-91. doi: 10.1098/rsif.2005.0103. J R Soc Interface. 2006. PMID: 16849267 Free PMC article.
-
Counter-intuitive stochastic behavior of simple gene circuits with negative feedback.Biophys J. 2010 May 19;98(9):1742-50. doi: 10.1016/j.bpj.2010.01.018. Biophys J. 2010. PMID: 20441737 Free PMC article.
-
An optimal number of molecules for signal amplification and discrimination in a chemical cascade.Biophys J. 2006 Sep 15;91(6):2072-81. doi: 10.1529/biophysj.105.070797. Epub 2006 Jun 23. Biophys J. 2006. PMID: 16798800 Free PMC article.
-
Estimation of the source-by-source effect of autorepression on genetic noise.Biophys J. 2008 Aug;95(3):1063-74. doi: 10.1529/biophysj.107.124677. Epub 2008 Apr 4. Biophys J. 2008. PMID: 18390607 Free PMC article.
-
Mutational robustness of gene regulatory networks.PLoS One. 2012;7(1):e30591. doi: 10.1371/journal.pone.0030591. Epub 2012 Jan 25. PLoS One. 2012. PMID: 22295094 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources