Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jun;41(2):355-62.
doi: 10.1016/j.pep.2005.02.003.

Purification, properties, and crystallization of Saccharomyces cerevisiae dihydropterin pyrophosphokinase-dihydropteroate synthase

Affiliations

Purification, properties, and crystallization of Saccharomyces cerevisiae dihydropterin pyrophosphokinase-dihydropteroate synthase

Janette Berglez et al. Protein Expr Purif. 2005 Jun.

Abstract

The tri-functional enzyme of Saccharomyces cerevisiae dihydroneopterin aldolase (DHNA)-dihydropterin pyrophosphokinase (PPPK)-dihydropteroate synthase (DHPS) catalyzes three sequential steps in folate biosynthesis. A cDNA encoding the PPPK and DHPS domains of the tri-functional enzyme has been cloned. This bi-functional enzyme was expressed as a His(6) fusion protein in Escherichia coli and the protein was purified to apparent homogeneity. The purified protein possesses both PPPK and DHPS activities as measured by the incorporation of [(3)H]p-ABA into the appropriate substrate. The pH optimum of the DHPS activity was determined to be 8.5. Gel filtration measurement indicates that the protein exists as a dimer in solution. A robotic screening method was used to identify crystallization conditions. Bi-pyramidal crystals of the enzyme formed with the protein in the presence of a pterin substrate analog in phosphate buffer (pH 6.3) and these diffracted to 2.3A. Structural information from these crystals could be used to design novel drugs to inhibit folate biosynthesis.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources