Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Mar-Apr;11(3-4):645-58.
doi: 10.1089/ten.2005.11.645.

Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover

Affiliations

Bone morphogenetic protein 2 and retinoic acid accelerate in vivo bone formation, osteoclast recruitment, and bone turnover

Catherine M Cowan et al. Tissue Eng. 2005 Mar-Apr.

Abstract

Reconstruction of craniofacial defects presents a substantial biomedical burden, and requires complex surgery. Interestingly, children after age 2 years and adults are unable to heal large skull defects. This nonhealing paradigm provides an excellent model system for craniofacial skeletal tissueengineering strategies. Previous studies have documented the in vivo osteogenic potential of adipose-derived stromal (ADS) cells and bone marrow-derived stromal (BMS) cells. This study investigates the ability to accelerate in vivo osteogenesis on ex vivo recombinant human bone morphogenetic protein 2 (BMP-2) and retinoic acid stimulation. Mouse osteoblasts, ADS cells, and BMS cells were seeded onto apatite-coated PLGA scaffolds, stimulated with rhBMP-2 and retinoic acid ex vivo for 4 weeks, and subsequently implanted into critically sized (4 mm) calvarial defects. Samples were harvested after 2, 4, 8, and 12 weeks. Areas of complete bony bridging were noted as early as 2 weeks in vivo; however, osteoclasts were attracted to the scaffold as identified by calcitonin receptor staining and tartrate-resistant acid phosphatase activity staining. Although the optimal method of in vitro osteogenic priming for mesenchymal cells remains unknown, these results provide evidence that BMP-2 and retinoic acid stimulation of multipotent cells ex vivo can subsequently induce significant quantities of bone formation within a short time period in vivo.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources