Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul 1;280(26):25258-66.
doi: 10.1074/jbc.M501630200. Epub 2005 May 3.

Pituitary adenylyl cyclase-activating polypeptide 38 reduces astroglial proliferation by inhibiting the GTPase RhoA

Affiliations
Free article

Pituitary adenylyl cyclase-activating polypeptide 38 reduces astroglial proliferation by inhibiting the GTPase RhoA

Dieter K Meyer et al. J Biol Chem. .
Free article

Abstract

Pituitary adenylyl cyclase-activating polypeptide 38 (PACAP38) plays an important role in the proliferation and differentiation of neural cells. In the present study, we have investigated how PACAP38 inhibits the proliferation of cultured neocortical astroglial cells. When applied to synchronized cells during the G(1) phase of the cell cycle, PACAP38 diminished the subsequent nuclear uptake of bromodeoxyuridine. When applied for 2 days, it reduced the cell number. PACAP38 did not exert its antiproliferative effect by activating protein kinase A. It also did not reduce the activity of mitogen-activated protein kinases essential for G(1) phase progression. Instead, PACAP38 acted on a member of the Rho family of small GTPases. It reduced the activity of RhoA as was shown with a Rhotekin pull-down assay. The decrease in endogenous RhoA activity induced by treatment of the cells with C3 exotoxin or by expression of dominant negative RhoA also reduced the nuclear uptake of bromodeoxyuridine. In contrast, expression of constitutively active RhoA prevented the effect of PACAP38. Our data show a novel signal transduction pathway by which the neuropeptide influences cell proliferation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources