Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis
- PMID: 15871125
- DOI: 10.1086/429931
Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis
Abstract
Population genetics and comparative genomics analyses of the pathogenic Yersinia species have indicated that arthropodborne transmission is an evolutionarily recent adaptation in Yersinia pestis, the agent of plague. We show that the infectivity of Y. pestis to its most proficient vector, the rat flea Xenopsylla cheopis, and subsequent transmission efficiency are both low. The poor vector competence of fleas likely imposed selective pressure that favored the emergence and continued maintenance of a hypervirulent Y. pestis clone. In particular, the rapidly fatal gram-negative sepsis that typifies plague is a consequence of the high threshold bacteremia level that must be attained to complete the transmission cycle. Epidemiological modeling predicts that, to compensate for a relatively short period of infectivity of the mammalian host for the arthropod vector, plague epizootics require a high flea burden per host, even when the susceptible host population density is high.
Similar articles
-
Yersinia murine toxin is not required for early-phase transmission of Yersinia pestis by Oropsylla montana (Siphonaptera: Ceratophyllidae) or Xenopsylla cheopis (Siphonaptera: Pulicidae).Microbiology (Reading). 2014 Nov;160(Pt 11):2517-2525. doi: 10.1099/mic.0.082123-0. Epub 2014 Sep 3. Microbiology (Reading). 2014. PMID: 25187626 Free PMC article.
-
Effects of low-temperature flea maintenance on the transmission of Yersinia pestis by Oropsylla montana.Vector Borne Zoonotic Dis. 2013 Jul;13(7):468-78. doi: 10.1089/vbz.2012.1017. Epub 2013 Apr 16. Vector Borne Zoonotic Dis. 2013. PMID: 23590319
-
Transovarial transmission of Yersinia pestis in its flea vector Xenopsylla cheopis.Nat Commun. 2024 Aug 23;15(1):7266. doi: 10.1038/s41467-024-51668-0. Nat Commun. 2024. PMID: 39179552 Free PMC article.
-
Yersinia--flea interactions and the evolution of the arthropod-borne transmission route of plague.Curr Opin Microbiol. 2012 Jun;15(3):239-46. doi: 10.1016/j.mib.2012.02.003. Epub 2012 Mar 7. Curr Opin Microbiol. 2012. PMID: 22406208 Free PMC article. Review.
-
Analysis of Yersinia pestis gene expression in the flea vector.Adv Exp Med Biol. 2007;603:192-200. doi: 10.1007/978-0-387-72124-8_16. Adv Exp Med Biol. 2007. PMID: 17966415 Review.
Cited by
-
Opposing roles for interferon regulatory factor-3 (IRF-3) and type I interferon signaling during plague.PLoS Pathog. 2012;8(7):e1002817. doi: 10.1371/journal.ppat.1002817. Epub 2012 Jul 26. PLoS Pathog. 2012. PMID: 22911267 Free PMC article.
-
Anthropogenic disturbance and the risk of flea-borne disease transmission.Oecologia. 2010 Nov;164(3):809-20. doi: 10.1007/s00442-010-1747-5. Epub 2010 Aug 26. Oecologia. 2010. PMID: 20740292
-
Formation and regulation of Yersinia biofilms.Protein Cell. 2011 Mar;2(3):173-9. doi: 10.1007/s13238-011-1024-3. Epub 2011 Mar 5. Protein Cell. 2011. PMID: 21380640 Free PMC article. Review.
-
High-throughput analysis of Yersinia pseudotuberculosis gene essentiality in optimised in vitro conditions, and implications for the speciation of Yersinia pestis.BMC Microbiol. 2018 May 31;18(1):46. doi: 10.1186/s12866-018-1189-5. BMC Microbiol. 2018. PMID: 29855259 Free PMC article.
-
To block or not to block: The adaptive manipulation of plague transmission.Evol Lett. 2019 Mar 27;3(2):152-161. doi: 10.1002/evl3.111. eCollection 2019 Apr. Evol Lett. 2019. PMID: 31161047 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical