Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2005 May;46(5):850-8.

Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen

Affiliations
  • PMID: 15872360
Free article
Clinical Trial

Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate-specific membrane antigen

Shankar Vallabhajosula et al. J Nucl Med. 2005 May.
Free article

Abstract

In radioimmunotherapy, myelotoxicity due to bone marrow radiation-absorbed dose is the predominant factor and frequently is the dose-limiting factor that determines the maximum tolerated dose (MTD). With (90)Y- and (131)I-labeled monoclonal antibodies, it has been reported that myelotoxicity cannot be predicted on the basis of the amount of radioactive dose administered or the bone marrow radiation-absorbed dose (BMrad), estimated using blood radioactivity concentration. As part of a phase I dose-escalation study in patients with prostate cancer with (90)Y-DOTA-J591 (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) ((90)Y-J591) and (177)Lu-DOTA-J591 ((177)Lu-J591), we evaluated the potential value of several factors in predicting myelotoxicity.

Methods: Seven groups of patients (n = 28) received 370-2,775 MBq/m(2) (10-75 mCi/m(2)) of (177)Lu-J591 and 5 groups of patients (n = 27) received 185-740 MBq (5-20 mCi/m(2)) of (90)Y-J591. Pharmacokinetics and imaging studies were performed for 1-2 wk after (177)Lu treatment, whereas patients receiving (90)Y had these studies performed with (111)In-DOTA-J591 ((111)In-J591) as a surrogate. The BMrad was estimated based on blood radioactivity concentration. Myelotoxicity consisting of thrombocytopenia or neutropenia was graded 1-4 based on criteria of the National Cancer Institute.

Results: Blood pharmacokinetics are similar for both tracers. The radiation dose (mGy/MBq) to the bone marrow was 3 times higher with (90)Y (0.91 +/- 0.43) compared with that with (177)Lu (0.32 +/- 0.10). The MTD was 647.5 MBq/m(2) with (90)Y-J591 and 2,590 MBq/m(2) with (177)Lu-J591. The percentage of patients with myelotoxicity (grade 3-4) increased with increasing doses of (90)Y (r = 0.91) or (177)Lu (r = 0.92). There was a better correlation between the radioactive dose administered and the BMrad with (177)Lu (r = 0.91) compared with that with (90)Y (r = 0.75). In addition, with (177)Lu, the fractional decrease in platelets (FDP) correlates well with both the radioactive dose administered (r = 0.88) and the BMrad (r = 0.86). In contrast, with (90)Y, there was poor correlation between the FDP and the radioactive dose administered (r = 0.20) or the BMrad (r = 0.26). Similar results were also observed with white blood cell toxicity.

Conclusion: In patients with prostate cancer, myelotoxicity after treatment with (177)Lu-J591 can be predicted on the basis of the amount of radioactive dose administered or the BMrad. The lack of correlation between myelotoxicity and (90)Y-J591 BMrad may be due to several factors. (90)Y-J591 may be less stable in vivo and, as a result, higher amounts of free (90)Y may be localized in the bone. In addition, the cross-fire effect of high-energy beta(-)-particles within the bone and the marrow may deliver radiation dose nonuniformly within the marrow.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources