Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 May 16;44(10):3636-56.
doi: 10.1021/ic040117e.

Square planar vs tetrahedral coordination in diamagnetic complexes of nickel(II) containing two bidentate pi-radical monoanions

Affiliations

Square planar vs tetrahedral coordination in diamagnetic complexes of nickel(II) containing two bidentate pi-radical monoanions

Sebastien Blanchard et al. Inorg Chem. .

Abstract

The reaction of three different 1-phenyl and 1,4-diphenyl substituted S-methylisothiosemicarbazides, H(2)[L(1-6)], with Ni(OAc)(2).4H(2)O in ethanol in the presence of air yields six four-coordinate species [Ni(L(1-6)(*))(2)] (1-6) where (L(1-6)(*))(1-) represent the monoanionic pi-radical forms. The crystal structures of the nickel complexes with 1-phenyl derivatives as in 1 reveal a square planar structure trans-[Ni(L(1)(-3)(*))(2)], whereas the corresponding 1,4-diphenyl derivatives are distorted tetrahedral as is demonstrated by X-ray crystallography of [Ni(L(5)(*))(2)] (5) and [Ni(L(6)(*))(2)] (6). Both series of mononuclear complexes possess a diamagnetic ground state. The electronic structures of both series have been elucidated experimentally (electronic spectra magnetization data). The square planar complexes 1-3 consist of a diamagnetic central Ni(II) ion and two strongly antiferromagnetically coupled ligand pi-radicals as has been deduced from correlated ab initio calculations; they are singlet diradicals. The tetrahedral complexes 4-6 consist of a paramagnetic high-spin Ni(II) ion (S(Ni) = 1), which is strongly antiferromagnetically coupled to two ligand pi-radicals. This is clearly revealed by DFT and correlated ab initio calculations. Electrochemically, complexes 1-6 can be reduced to form stable, paramagnetic monoanions [1-6](-) (S = (1)/(2)). The anions [1-3](-) are square planar Ni(II) (d,(8) S(Ni) = 0) species where the excess electron is delocalized over both ligands (class III, ligand mixed valency). In contrast, one-electron reduction of 4, 5, and 6 yields paramagnetic tetrahedral monoanions (S = (1)/(2)). X-band EPR spectroscopy shows that there are two different isomers A and B of each monoanion present in solution. In these anions, the excess electron is localized on one ligand [Ni(II)(L(4-6)(*))(L(4-6))](-) where (L(4-6))(2-) is the closed shell dianion of the ligands H(2)[L(4-6)] as was deduced from their electronic spectra and broken symmetry DFT calculations. Oxidation of 1 and 5 with excess iodine yields octahedral complexes [Ni(II)(L(1,ox))(2)I(2)] (7), [Ni(II)(L(1,ox))(3)](I(3))(2) (8), and trans-[Ni(II)(L(5,ox))(2)(I(3))(2)] (9), which have been characterized by X-ray crystallography; (L(1-)(6,ox)) represent the neutral, two-electron oxidized forms of the corresponding dianions (L(1-6))(2-). The room-temperature structures of complexes 1, 5, and 7 have been described previously in refs 1-5.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources