Light-activated amino acid transport in Halobacterium halobium envelope vesicles
- PMID: 15878
Light-activated amino acid transport in Halobacterium halobium envelope vesicles
Abstract
Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na-gradient. Sodium-activated amino acid transport for 18 of these amino acids has been shown to occur in direct response to the protonmotive force generated. Glutamate is transported only in response to a sodium gradient. Michaelis constants for the uptake of these amino acids are close or identical whether the amino acids are accumulated in response to a sodium gradient or a protonmotive force (i.e., electrical gradient). On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids, i.e., arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.
Similar articles
-
Light energy conversion in Halobacterium halobium.Microbiol Rev. 1978 Dec;42(4):682-706. doi: 10.1128/mr.42.4.682-706.1978. Microbiol Rev. 1978. PMID: 368557 Free PMC article. Review. No abstract available.
-
Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients.Biochemistry. 1977 Jul 12;16(14):3227-35. doi: 10.1021/bi00633a029. Biochemistry. 1977. PMID: 889797
-
Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles.Fed Proc. 1977 May;36(6):1824-7. Fed Proc. 1977. PMID: 15877
-
Transport in halobacterium halobium: light-induced cation-gradients, amino acid transport kinetics, and properties of transport carriers.J Supramol Struct. 1977;6(2):169-77. doi: 10.1002/jss.400060203. J Supramol Struct. 1977. PMID: 20536 No abstract available.
-
Secondary transport of amino acids by membrane vesicles derived from lactic acid bacteria.Antonie Van Leeuwenhoek. 1989 Aug;56(2):139-60. doi: 10.1007/BF00399978. Antonie Van Leeuwenhoek. 1989. PMID: 2508549 Review.
Cited by
-
Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients.Proc Natl Acad Sci U S A. 1977 Aug;74(8):3167-70. doi: 10.1073/pnas.74.8.3167. Proc Natl Acad Sci U S A. 1977. PMID: 20621 Free PMC article.
-
Bacteriorhodopsin induces a light-scattering change in Halobacterium halobium.J Cell Biol. 1978 Dec;79(3):657-62. doi: 10.1083/jcb.79.3.657. J Cell Biol. 1978. PMID: 32181 Free PMC article.
-
Primary and secondary chloride transport in Halobacterium halobium.J Bacteriol. 1986 Nov;168(2):548-52. doi: 10.1128/jb.168.2.548-552.1986. J Bacteriol. 1986. PMID: 3782015 Free PMC article.
-
Location of the chromophore in bacteriorhodopsin.Proc Natl Acad Sci U S A. 1980 Aug;77(8):4726-30. doi: 10.1073/pnas.77.8.4726. Proc Natl Acad Sci U S A. 1980. PMID: 6933519 Free PMC article.
-
Light energy conversion in Halobacterium halobium.Microbiol Rev. 1978 Dec;42(4):682-706. doi: 10.1128/mr.42.4.682-706.1978. Microbiol Rev. 1978. PMID: 368557 Free PMC article. Review. No abstract available.