Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jul;39(1):121-32.
doi: 10.1016/j.yjmcc.2005.03.013.

KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels

Affiliations

KChIP2 modulates the cell surface expression of Kv 1.5-encoded K(+) channels

Huilin Li et al. J Mol Cell Cardiol. 2005 Jul.

Erratum in

  • J Mol Cell Cardiol. 2005 Oct;39(4):723

Abstract

The Kv channel interacting proteins (KChIPs) were identified in a yeast two hybrid screen using the N terminus of Kv4.3 as bait. Previous studies have demonstrated that KChIP2 associates with voltage-gated K(+) (Kv) pore-forming (alpha) subunits of the Kv4 subfamily and contributes to the formation of the rapidly inactivating and recovering Kv4-encoded cardiac transient outward K(+) channels, I(to,f). Here, we report that co-expression of KChIP2 (or KChIP1) also modulates the functional cell surface expression of Kv1.5-encoded K(+) channels in transiently transfected HEK-293 cells. In contrast to the effects of KChIP2 on Kv4 channels, however, co-expression of KChIP2 (or KChIP1) decreases Kv1.5-encoded K(+) currents. Although current densities are reduced, KChIP2 (or KChIP1) co-expression does not affect the time- or voltage-dependent properties of heterologously expressed Kv1.5-encoded K(+) currents. Immunohistochemical and cell surface biotinylation experiments demonstrate that KChIP2 reduces the cell surface expression of Kv1.5, likely by inhibiting forward trafficking from the endoplasmic reticulum. In addition, biochemical experiments reveal that KChIP2 co-immunoprecipitates with Kv1.5 (as well as Kv4.2/Kv4.3) from adult mouse ventricles, demonstrating that, similar to other Kv accessory subunits, KChIP2 is a multifunctional Kv channel accessory subunit. Taken together, the results here suggest that KChIP2 contributes to the formation of functional mouse ventricular (Kv1.5-encoded) I(K,slow1) channels as well, perhaps, as other Kv1.5-encoded K(+) currents, including I(Kur) (I(K,ultrarapid)), in human atria.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources